36.分组聚合操作—bucket进行多层嵌套
主要知识点:
- 分组聚合操作—嵌套bucket。
本讲以前面电商实例,从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格。
比如说,现在红色的电视有4台,同时这4台电视中,有3台是属于长虹的,1台是属于小米的,那么:
- 红色电视中的3台长虹的平均价格是多少?
- 红色电视中的1台小米的平均价格是多少?
下钻的意思是,已经分了一个组了,比如说颜色的分组,然后还要继续对这个分组内的数据,再分组,比如一个颜色内,还可以分成多个不同的品牌的组,最后对每个最小粒度的分组执行聚合分析操作,这就叫做下钻分析,表示在es语法上就是bucket进行多层嵌套。
语法:
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"color_avg_price": {
"avg": {
"field": "price"
}
},
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
执行结果(部分):
"aggregations": {
"group_by_color": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "红色",
"doc_count": 4,
"color_to_price": {
"value": 3250
},
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "长虹",
"doc_count": 3,
"brand_avg_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 2000,
"doc_count": 2
},
{
"key": 1000,
"doc_count": 1
}
]
}
},
{
"key": "三星",
"doc_count": 1,
"brand_avg_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 8000,
"doc_count": 1
}
]
}
}
]
}
}
一定要注意这种写法,要注意这些语句的层级关系。
36.分组聚合操作—bucket进行多层嵌套的更多相关文章
- 34.分组聚合操作—bucket
主要知识点: 学习聚合知识 一.准备数据 1.家电卖场案例背景建立index 以一个家电卖场中的电视销售数据为背景,来对各种品牌,各种颜色的电视的销量和销售额,进行各种各样角度的分析 ...
- 35.分组聚合操作—bucket+metric
主要知识点: bucket+metric 计算分种颜色的电视的平均价格 语法: GET /tvs/sales/_search { "size" : 0, "agg ...
- 37.分组聚合操作—其他metric
课程大纲 要学其他的metric(count,avg,max,min,sum) count:bucket,terms,自动就会有一个doc_count,就相当于是count avg:avg a ...
- Atitit 数据存储的分组聚合 groupby的实现attilax总结
Atitit 数据存储的分组聚合 groupby的实现attilax总结 1. 聚合操作1 1.1. a.标量聚合 流聚合1 1.2. b.哈希聚合2 1.3. 所有的最优计划的选择都是基于现有统计 ...
- elasticsearch聚合操作——本质就是针对搜索后的结果使用桶bucket(允许嵌套)进行group by,统计下分组结果,包括min/max/avg
分析 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计.它很像SQL中的GROUP BY但是功能更强大. 举个例子,让我们找到所有职员中最大 ...
- 011-elasticsearch5.4.3【四】-聚合操作【二】-桶聚合【bucket】过滤、嵌套、反转、分组、排序、范围
一.概述 bucketing(桶)聚合:划分不同的“桶”,将数据分配到不同的“桶”里.非常类似sql中的group语句的含义. metric既可以作用在整个数据集上,也可以作为bucketing的子聚 ...
- Pandas 分组聚合 :分组、分组对象操作
1.概述 1.1 group语法 df.groupby(self, by=None, axis=0, level=None, as_index: bool=True, sort: bool=True, ...
- Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终端打印SQL语句,脚本调试)
Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终 ...
- 数据分析入门——pandas之DataFrame多层/多级索引与聚合操作
一.行多层索引 1.隐式创建 在构造函数中给index.colunms等多个数组实现(datafarme与series都可以) df的多级索引创建方法类似: 2.显式创建pd.MultiIndex 其 ...
随机推荐
- 怎样设置mysql远程訪问
Mysql默认是不能够通过远程机器訪问的,通过以下的配置能够开启远程訪问 在MySQL Server端: 运行mysql 命令进入mysql 命令模式, mysql> use mysql; ...
- Oracle 用户管理(二)
1 给某人赋予"系统权限" SQL> grant connect to aobama with admin option 意思是将admin的连接数据库 ...
- Codeforces Round #329 (Div. 2)B. Anton and Lines 贪心
B. Anton and Lines The teacher gave Anton a large geometry homework, but he didn't do it (as usual ...
- openstack instance resize to
Icehouse resize No valid host was found Hi all!! We're currently experimenting an error that's it's ...
- Core Data的那点事儿~
一.介绍下Core Data CoreData在早些年iOS开发中使用不多,因为其本身性能略低,以及不使用SQL语句而失去的灵活性,再加上FMDB之类封装SQLite的三方框架很好用,所以一直不受待见 ...
- Akka源码分析-Extension
一个设计优秀的工具或框架,应该都有一个易用.强大的插件或扩展体系,akka也不例外. akka的扩展方法非常简单,因为只涉及到两个组件:Extension. ExtensionId.其中Extensi ...
- C# 截取字符串——
string strID ="NODE_aSDFghsdfgyuhjidfgh_45678" //得到_ 中间的数 int index = strID.IndexOf(" ...
- Django返回json给钱前台的方法
return HttpResponse(simplejson.dumps(resource.update_status, ensure_ascii=False))
- Android内存管理(11)*常见JVM回收机制「Java进程内存堆分代,JVM分代回收内存,三种垃圾回收器」
参考: http://www.blogjava.net/rosen/archive/2010/05/21/321575.html 1,Java进程内存堆分代: 典型的JVM根据generation(代 ...
- sqlyog注册码激活
姓 名(Name):ttrar 序 列 号(Code):8d8120df-a5c3-4989-8f47-5afc79c56e7c 或者(OR) 姓 名(Name):ttrar 序 列 ...