36.分组聚合操作—bucket进行多层嵌套
主要知识点:
- 分组聚合操作—嵌套bucket。
本讲以前面电商实例,从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格。
比如说,现在红色的电视有4台,同时这4台电视中,有3台是属于长虹的,1台是属于小米的,那么:
- 红色电视中的3台长虹的平均价格是多少?
- 红色电视中的1台小米的平均价格是多少?
下钻的意思是,已经分了一个组了,比如说颜色的分组,然后还要继续对这个分组内的数据,再分组,比如一个颜色内,还可以分成多个不同的品牌的组,最后对每个最小粒度的分组执行聚合分析操作,这就叫做下钻分析,表示在es语法上就是bucket进行多层嵌套。
语法:
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"color_avg_price": {
"avg": {
"field": "price"
}
},
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
执行结果(部分):
"aggregations": {
"group_by_color": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "红色",
"doc_count": 4,
"color_to_price": {
"value": 3250
},
"group_by_brand": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "长虹",
"doc_count": 3,
"brand_avg_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 2000,
"doc_count": 2
},
{
"key": 1000,
"doc_count": 1
}
]
}
},
{
"key": "三星",
"doc_count": 1,
"brand_avg_price": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 8000,
"doc_count": 1
}
]
}
}
]
}
}
一定要注意这种写法,要注意这些语句的层级关系。
36.分组聚合操作—bucket进行多层嵌套的更多相关文章
- 34.分组聚合操作—bucket
主要知识点: 学习聚合知识 一.准备数据 1.家电卖场案例背景建立index 以一个家电卖场中的电视销售数据为背景,来对各种品牌,各种颜色的电视的销量和销售额,进行各种各样角度的分析 ...
- 35.分组聚合操作—bucket+metric
主要知识点: bucket+metric 计算分种颜色的电视的平均价格 语法: GET /tvs/sales/_search { "size" : 0, "agg ...
- 37.分组聚合操作—其他metric
课程大纲 要学其他的metric(count,avg,max,min,sum) count:bucket,terms,自动就会有一个doc_count,就相当于是count avg:avg a ...
- Atitit 数据存储的分组聚合 groupby的实现attilax总结
Atitit 数据存储的分组聚合 groupby的实现attilax总结 1. 聚合操作1 1.1. a.标量聚合 流聚合1 1.2. b.哈希聚合2 1.3. 所有的最优计划的选择都是基于现有统计 ...
- elasticsearch聚合操作——本质就是针对搜索后的结果使用桶bucket(允许嵌套)进行group by,统计下分组结果,包括min/max/avg
分析 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计.它很像SQL中的GROUP BY但是功能更强大. 举个例子,让我们找到所有职员中最大 ...
- 011-elasticsearch5.4.3【四】-聚合操作【二】-桶聚合【bucket】过滤、嵌套、反转、分组、排序、范围
一.概述 bucketing(桶)聚合:划分不同的“桶”,将数据分配到不同的“桶”里.非常类似sql中的group语句的含义. metric既可以作用在整个数据集上,也可以作为bucketing的子聚 ...
- Pandas 分组聚合 :分组、分组对象操作
1.概述 1.1 group语法 df.groupby(self, by=None, axis=0, level=None, as_index: bool=True, sort: bool=True, ...
- Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终端打印SQL语句,脚本调试)
Django---Django的ORM的一对多操作(外键操作),ORM的多对多操作(关系管理对象),ORM的分组聚合,ORM的F字段查询和Q字段条件查询,Django的事务操作,额外(Django的终 ...
- 数据分析入门——pandas之DataFrame多层/多级索引与聚合操作
一.行多层索引 1.隐式创建 在构造函数中给index.colunms等多个数组实现(datafarme与series都可以) df的多级索引创建方法类似: 2.显式创建pd.MultiIndex 其 ...
随机推荐
- linux设备驱动模型二【转】
本文转载自:http://blog.csdn.net/u013904227/article/details/51167886 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] ...
- tab不显示为空格
- AngularJS2.0 一个表单例子——总体说来还是简化了1.x 使用起来比较自然
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- 使iframe随内容(target到iframe的内容)改变而自适应高度,完美解决各种获取第一个demo高度后第二个高度不变情况
转自:http://caiceclb.iteye.com/blog/281102 很高兴,终于使用jquery实现了点击外部链接,更改iframe内容时,iframe的高度自适应问题. 失败的测试就不 ...
- element-ui table 页面加载时,动态渲染后台传过来的数据(springmvc)
jsp页面 <%@ page contentType="text/html;charset=UTF-8" language="java" %> &l ...
- 看看 SDWebImage内部基本实现过程
一.实现流程 入口 setImageWithURL:placeholderImage:options: 会先把 placeholderImage 显示,然后 SDWebImageManager 根据 ...
- 【转载】Sybase数据库服务器端安装
sybase数据库的安装分为服务器端和客户端,本文先介绍一下服务器端的安装. 1.和其他程序一样,双击setup.exe. 2.出现欢迎界面,直接点击next即可. 3.下面选择相应国家的协议 ...
- Django day25 序列化组件(*****)
序列化:将变量从内存中存储或传输的过程称之为序列化 1.序列化组件是干什么用的? 对应着表,写序列化的类 2.如何使用序列化组件 Serializer 1) 重命名:用source:xx = seri ...
- Python基础类型(二) str 字符串
字符串str ' ' 字符串+ 都是字符串的时候才能相加 a = 'alex' b = 'wusir' print(a+b) #字符串拼接 字符串* 字符串和数字相乘 a = 6 b = 'alex' ...
- strupr函数
2019-06-03 15:13:39 strupr()函数! strupr,函数的一种,将字符串s转换为大写形式. 说明:只转换s中出现的小写字母,不改变其它字符.返回指向s的指针. 兼容性说明:s ...