D. Complete The Graph

time limit per test: 4 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m edges between them. Each edge of the graph is weighted, each weight is a positive integer.

The next day, ZS the Coder realized that some of the weights were erased! So he wants to reassign positive integer weight to each of the edges which weights were erased, so that the length of the shortest path between vertices s and t in the resulting graph is exactly L. Can you help him?

Input

The first line contains five integers n, m, L, s, t (2 ≤ n ≤ 1000,  1 ≤ m ≤ 10 000,  1 ≤ L ≤ 109,  0 ≤ s, t ≤ n - 1,  s ≠ t) — the number of vertices, number of edges, the desired length of shortest path, starting vertex and ending vertex respectively.

Then, m lines describing the edges of the graph follow. i-th of them contains three integers, ui, vi, wi(0 ≤ ui, vi ≤ n - 1,  ui ≠ vi,  0 ≤ wi ≤ 109). ui and vi denote the endpoints of the edge and wi denotes its weight. If wi is equal to 0 then the weight of the corresponding edge was erased.

It is guaranteed that there is at most one edge between any pair of vertices.

Output

Print "NO" (without quotes) in the only line if it's not possible to assign the weights in a required way.

Otherwise, print "YES" in the first line. Next m lines should contain the edges of the resulting graph, with weights assigned to edges which weights were erased. i-th of them should contain three integers uivi and wi, denoting an edge between vertices ui and vi of weight wi. The edges of the new graph must coincide with the ones in the graph from the input. The weights that were not erased must remain unchanged whereas the new weights can be any positive integer not exceeding 1018.

The order of the edges in the output doesn't matter. The length of the shortest path between s and t must be equal to L.

If there are multiple solutions, print any of them.

Examples

input
5 5 13 0 4
0 1 5
2 1 2
3 2 3
1 4 0
4 3 4
output
YES
0 1 5
2 1 2
3 2 3
1 4 8
4 3 4
input
2 1 999999999 1 0
0 1 1000000000
output
NO

Note

Here's how the graph in the first sample case looks like :

In the first sample case, there is only one missing edge weight. Placing the weight of 8 gives a shortest path from 0 to 4 of length 13.

In the second sample case, there is only a single edge. Clearly, the only way is to replace the missing weight with 123456789.

In the last sample case, there is no weights to assign but the length of the shortest path doesn't match the required value, so the answer is "NO".

Understanding

给一个无向图,有一些权值为0的边要重构成正数权值,使得s→t的最短路为l

Solution

特判掉原本最短路(没有加入0边)<l→"NO"

分析一下,s→t的最短路,贪心,加入0边,先不管取值,先一条条赋为1(最小positive integer),如果当前最短路<l是不是说明当前这条边是最短路的一部分,所以答案就出来了,将这条边赋值为l-d[t]+1,如果最短路仍>l,而这已经是这条边的最优贡献,所以赋值为1继续做.

然后注意一下细节即可(WA了4发~~)

复杂度:O(nmlogn)(优化:对了,每次做最短路,当前值已经>l可以直接退出,所以其实跑得很快296MS)

// This file is made by YJinpeng,created by XuYike's black technology automatically.
// Copyright (C) 2016 ChangJun High School, Inc.
// I don't know what this program is. #include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <queue>
#define IN inline
#define RG register
#define MOD 1000000007
#define INF 1e9+1
using namespace std;
typedef long long LL;
const int MAXN=1010;
const int MAXM=20010;
inline int gi() {
register int w=0,q=0;register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')q=1,ch=getchar();
while(ch>='0'&&ch<='9')w=w*10+ch-'0',ch=getchar();
return q?-w:w;
}
int tot,cnt,S[MAXM],T[MAXM];
struct Dijskra{
static const int N=1010,M=(N*10)<<1;
int n,t,l;int d[N],fr[N];int to[M],ne[M],be[M],W[M];bool u[N];
struct node{
int s,p;
bool operator<(node a)const{return s>a.s;}
};
priority_queue<node>q;
IN void link(RG int u,RG int v,RG int w){
//if(w>l)return; this some edges didn't get
to[++t]=v;ne[t]=fr[u];fr[u]=t;W[t]=w;be[t]=u;
}
int Dij(int begin,int end){
for(int i=0;i<n;i++)d[i]=INF;
q.push((node){d[begin]=0,begin});memset(u,0,sizeof(u));
while(!q.empty()){
while(u[q.top().p]&&!q.empty())q.pop();
if(q.empty())break;
int x=q.top().p;q.pop();u[x]=1;
if(x==end||d[x]>l)break;
for(int o=fr[x],y;y=to[o],o;o=ne[o])
if(d[x]+W[o]<d[y]&&d[x]+W[o]<=l){
d[y]=d[x]+W[o];
q.push((node){d[y],y});
}
}
return d[end];
}
void pri(int end){
printf("YES\n");
for(int i=1;i<t-1;i+=2)
printf("%d %d %d\n",be[i],to[i],W[i]);
printf("%d %d %d\n",be[t-1],to[t-1],l-d[end]+W[t-1]);//this W[t-1]
for(int i=tot;i<=cnt;i++)printf("%d %d %d\n",S[i],T[i],(int)INF);exit(0);
}
}e;
int main()
{
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
int n=gi(),m=gi(),l=gi(),s=gi(),t=gi();e.l=l;e.n=n;
for(int i=1;i<=m;i++){
int u=gi(),v=gi(),w=gi();
if(w)e.link(u,v,w),e.link(v,u,w);
else S[++cnt]=u,T[cnt]=v;
}tot=1;//this
if(e.Dij(s,t)<l){printf("NO");return 0;}
if(e.d[t]==l)e.pri(t);
for(;tot<=cnt;tot++){
e.link(S[tot],T[tot],1);e.link(T[tot],S[tot],1);
if(e.Dij(s,t)<=l)break;
}tot++;
if(tot>cnt+1)return 0*puts("NO");
e.pri(t);
return 0;
}

【Codeforces】716D Complete The Graph的更多相关文章

  1. Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))

    B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...

  2. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  3. 【Codeforces】Round #491 (Div. 2) 总结

    [Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...

  4. 【Codeforces】Round #488 (Div. 2) 总结

    [Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...

  5. 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))

    [题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...

  6. 【CodeForces】601 D. Acyclic Organic Compounds

    [题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...

  7. 【Codeforces】849D. Rooter's Song

    [算法]模拟 [题意]http://codeforces.com/contest/849/problem/D 给定n个点从x轴或y轴的位置p时间t出发,相遇后按对方路径走,问每个数字撞到墙的位置.(还 ...

  8. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  9. 【CodeForces】925 C.Big Secret 异或

    [题目]C.Big Secret [题意]给定数组b,求重排列b数组使其前缀异或和数组a单调递增.\(n \leq 10^5,1 \leq b_i \leq 2^{60}\). [算法]异或 为了拆位 ...

随机推荐

  1. CSU 2018年12月月赛 A 2213: Physics Exam

    Description 高中物理老师总认为给学生文本形式的问题比给纯计算形式的问题要求更高.毕竟,学生首先得阅读和理解问题. 因此,他们描述一个问题不像”U=10V,I=5A,P=?”,而是”有一个含 ...

  2. Python模块 shelve xml configparser hashlib

    常用模块1. shelve 一个字典对象模块 自动序列化2.xml 是一个文件格式 写配置文件或数据交换 <a name="hades">123</a>3. ...

  3. LINUX系统---中级相关操作和知识

    LINUX系统的中级,来搞一些LINUX安全相关的东西,还有在公司生成中长搞的集群. RHCS集群 什么是高可用 什么是热备 什么是分布式

  4. PAT 1073. 多选题常见计分法

    PAT 1073. 多选题常见计分法 批改多选题是比较麻烦的事情,有很多不同的计分方法.有一种最常见的计分方法是:如果考生选择了部分正确选项,并且没有选择任何错误选项,则得到50%分数:如果考生选择了 ...

  5. CUDA_one

    首先我看了讲解CUDA基础部分以后,大致对CUDA的基本了解如下: 第一:CUDA实行并行化的过程分为两部分,一个是线程块之间的并行(这是在每个线程网格中grid进行的),一个是对于每一个线程块内部各 ...

  6. mysql-5.7.17-winx64免安装配置

    一,下载mysql-5.7.17-winx64.zip 地址:https://dev.mysql.com/downloads/file/?id=467269 二,解压到自己的某个磁盘:data文件夹和 ...

  7. SQL SERVER占用CPU过高排查和优化

    操作系统是Windows2008R2 ,数据库是SQL2014 64位. 近阶段服务器出现过几次死机,管理员反馈机器内存使用率100%导致机器卡死.于是做了个监测服务器的软件实时记录CPU数据,几日观 ...

  8. Python接口测试之报告(十五)

    在本文章中,主要使用jenkins和编写的自动化测试代码,来生成漂亮的测试报告,关于什么是CI这些 我就不详细的介绍了,这里我们主要是实战为主. 首先搭建java的环境,这个这里不做介绍.搭建好jav ...

  9. [luoguP1972] [SDOI2009]HH的项链(莫队 || 树状数组 || 主席树)

    传送门 莫队基础题,适合我这种初学者. 莫队是离线算法,通常不带修改,时间复杂度为 O(n√n) 我们要先保证通过 [ l , r ] 求得 [ l , r + 1 ] , [ l , r - 1 ] ...

  10. [BZOJ3932] [CQOI2015]任务查询系统(主席树 || 树状数组 套 主席树 + 差分 + 离散化)

    传送门 看到这个题有个很暴力的想法, 可以每一个时间点都建一颗主席树,主席树上叶子节点 i 表示优先级为 i 的任务有多少个. 当 x 到 y 有个优先级为 k 的任务时,循环 x 到 y 的每个点, ...