D. Complete The Graph

time limit per test: 4 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m edges between them. Each edge of the graph is weighted, each weight is a positive integer.

The next day, ZS the Coder realized that some of the weights were erased! So he wants to reassign positive integer weight to each of the edges which weights were erased, so that the length of the shortest path between vertices s and t in the resulting graph is exactly L. Can you help him?

Input

The first line contains five integers n, m, L, s, t (2 ≤ n ≤ 1000,  1 ≤ m ≤ 10 000,  1 ≤ L ≤ 109,  0 ≤ s, t ≤ n - 1,  s ≠ t) — the number of vertices, number of edges, the desired length of shortest path, starting vertex and ending vertex respectively.

Then, m lines describing the edges of the graph follow. i-th of them contains three integers, ui, vi, wi(0 ≤ ui, vi ≤ n - 1,  ui ≠ vi,  0 ≤ wi ≤ 109). ui and vi denote the endpoints of the edge and wi denotes its weight. If wi is equal to 0 then the weight of the corresponding edge was erased.

It is guaranteed that there is at most one edge between any pair of vertices.

Output

Print "NO" (without quotes) in the only line if it's not possible to assign the weights in a required way.

Otherwise, print "YES" in the first line. Next m lines should contain the edges of the resulting graph, with weights assigned to edges which weights were erased. i-th of them should contain three integers uivi and wi, denoting an edge between vertices ui and vi of weight wi. The edges of the new graph must coincide with the ones in the graph from the input. The weights that were not erased must remain unchanged whereas the new weights can be any positive integer not exceeding 1018.

The order of the edges in the output doesn't matter. The length of the shortest path between s and t must be equal to L.

If there are multiple solutions, print any of them.

Examples

input
5 5 13 0 4
0 1 5
2 1 2
3 2 3
1 4 0
4 3 4
output
YES
0 1 5
2 1 2
3 2 3
1 4 8
4 3 4
input
2 1 999999999 1 0
0 1 1000000000
output
NO

Note

Here's how the graph in the first sample case looks like :

In the first sample case, there is only one missing edge weight. Placing the weight of 8 gives a shortest path from 0 to 4 of length 13.

In the second sample case, there is only a single edge. Clearly, the only way is to replace the missing weight with 123456789.

In the last sample case, there is no weights to assign but the length of the shortest path doesn't match the required value, so the answer is "NO".

Understanding

给一个无向图,有一些权值为0的边要重构成正数权值,使得s→t的最短路为l

Solution

特判掉原本最短路(没有加入0边)<l→"NO"

分析一下,s→t的最短路,贪心,加入0边,先不管取值,先一条条赋为1(最小positive integer),如果当前最短路<l是不是说明当前这条边是最短路的一部分,所以答案就出来了,将这条边赋值为l-d[t]+1,如果最短路仍>l,而这已经是这条边的最优贡献,所以赋值为1继续做.

然后注意一下细节即可(WA了4发~~)

复杂度:O(nmlogn)(优化:对了,每次做最短路,当前值已经>l可以直接退出,所以其实跑得很快296MS)

// This file is made by YJinpeng,created by XuYike's black technology automatically.
// Copyright (C) 2016 ChangJun High School, Inc.
// I don't know what this program is. #include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <queue>
#define IN inline
#define RG register
#define MOD 1000000007
#define INF 1e9+1
using namespace std;
typedef long long LL;
const int MAXN=1010;
const int MAXM=20010;
inline int gi() {
register int w=0,q=0;register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')q=1,ch=getchar();
while(ch>='0'&&ch<='9')w=w*10+ch-'0',ch=getchar();
return q?-w:w;
}
int tot,cnt,S[MAXM],T[MAXM];
struct Dijskra{
static const int N=1010,M=(N*10)<<1;
int n,t,l;int d[N],fr[N];int to[M],ne[M],be[M],W[M];bool u[N];
struct node{
int s,p;
bool operator<(node a)const{return s>a.s;}
};
priority_queue<node>q;
IN void link(RG int u,RG int v,RG int w){
//if(w>l)return; this some edges didn't get
to[++t]=v;ne[t]=fr[u];fr[u]=t;W[t]=w;be[t]=u;
}
int Dij(int begin,int end){
for(int i=0;i<n;i++)d[i]=INF;
q.push((node){d[begin]=0,begin});memset(u,0,sizeof(u));
while(!q.empty()){
while(u[q.top().p]&&!q.empty())q.pop();
if(q.empty())break;
int x=q.top().p;q.pop();u[x]=1;
if(x==end||d[x]>l)break;
for(int o=fr[x],y;y=to[o],o;o=ne[o])
if(d[x]+W[o]<d[y]&&d[x]+W[o]<=l){
d[y]=d[x]+W[o];
q.push((node){d[y],y});
}
}
return d[end];
}
void pri(int end){
printf("YES\n");
for(int i=1;i<t-1;i+=2)
printf("%d %d %d\n",be[i],to[i],W[i]);
printf("%d %d %d\n",be[t-1],to[t-1],l-d[end]+W[t-1]);//this W[t-1]
for(int i=tot;i<=cnt;i++)printf("%d %d %d\n",S[i],T[i],(int)INF);exit(0);
}
}e;
int main()
{
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
int n=gi(),m=gi(),l=gi(),s=gi(),t=gi();e.l=l;e.n=n;
for(int i=1;i<=m;i++){
int u=gi(),v=gi(),w=gi();
if(w)e.link(u,v,w),e.link(v,u,w);
else S[++cnt]=u,T[cnt]=v;
}tot=1;//this
if(e.Dij(s,t)<l){printf("NO");return 0;}
if(e.d[t]==l)e.pri(t);
for(;tot<=cnt;tot++){
e.link(S[tot],T[tot],1);e.link(T[tot],S[tot],1);
if(e.Dij(s,t)<=l)break;
}tot++;
if(tot>cnt+1)return 0*puts("NO");
e.pri(t);
return 0;
}

【Codeforces】716D Complete The Graph的更多相关文章

  1. Codeforces 715B & 716D Complete The Graph 【最短路】 (Codeforces Round #372 (Div. 2))

    B. Complete The Graph time limit per test 4 seconds memory limit per test 256 megabytes input standa ...

  2. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  3. 【Codeforces】Round #491 (Div. 2) 总结

    [Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...

  4. 【Codeforces】Round #488 (Div. 2) 总结

    [Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...

  5. 【CodeForces】841D. Leha and another game about graph(Codeforces Round #429 (Div. 2))

    [题意]给定n个点和m条无向边(有重边无自环),每个点有权值di=-1,0,1,要求仅保留一些边使得所有点i满足:di=-1或degree%2=di,输出任意方案. [算法]数学+搜索 [题解] 最关 ...

  6. 【CodeForces】601 D. Acyclic Organic Compounds

    [题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...

  7. 【Codeforces】849D. Rooter's Song

    [算法]模拟 [题意]http://codeforces.com/contest/849/problem/D 给定n个点从x轴或y轴的位置p时间t出发,相遇后按对方路径走,问每个数字撞到墙的位置.(还 ...

  8. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  9. 【CodeForces】925 C.Big Secret 异或

    [题目]C.Big Secret [题意]给定数组b,求重排列b数组使其前缀异或和数组a单调递增.\(n \leq 10^5,1 \leq b_i \leq 2^{60}\). [算法]异或 为了拆位 ...

随机推荐

  1. 笔试算法题(52):简介 - KMP算法(D.E. Knuth, J.H. Morris, V.R. Pratt Algorithm)

    议题:KMP算法(D.E. Knuth, J.H. Morris, V.R. Pratt Algorithm) 分析: KMP算法用于在一个主串中找出特定的字符或者模式串.现在假设主串为长度n的数组T ...

  2. Linux命令学习(6):paste合并几列文件

    如果我们有三个文件: $ cat name.txt #姓名文档 Kevin Mary Tom $ cat gender.txt #性别文档 M F M $ cat age.txt #年龄文档 我们想把 ...

  3. android 如何从activity跳转到另一个activity下指定的fragment

    思路: 跳转到目标fragment所在的activity,并传递一个flag,来确定要到哪个fragment,根据该flag判断后,跳转到指定的fragment即可. 代码: 当前界面: intent ...

  4. python while、continue、break

    while循环实现用户登录 _user = "tom" _passwd = "abc123" counter = 0 while counter < 3: ...

  5. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  6. 【BZOJ 1202】 [HNOI2005]狡猾的商人 (加权并查集)

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1202 Description 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪 ...

  7. JavaScript - 如果...没有方法(xjl456852修改)

    本文是对下面这篇文章中存在的错误进行修改,并增加少量注释. 原文出处: JavaScript - 如果...没有方法 http://www.cnblogs.com/silin6/p/4367019.h ...

  8. 使用java发送电子邮件

    经常在账号绑定邮箱或找回密码时,邮箱会收到一条验证邮件,好奇用代码该怎么发送邮件,看到了许多相关的博客,实现步骤都写的很详细,今天照着其他博客的步骤也确实实现了代码发送邮件,在这里重新记录下步骤,加深 ...

  9. Quartz.Net 学习之路01 安装Quartz.Net

    Quartz.Net 系列文章的第一篇,至于Quartz.Net 是做什么的我就不介绍了,相信要用到它的都知道它是用来干嘛的: Quartz.Net安装方法: 1.打开项目,在VS“工具”菜单选中“库 ...

  10. String replaceAll-正则匹配-截取以指定字符开头,以指定字符结尾的字符串

    scala代码块 截取以某个字符开头,以某个字符结尾的字符串 def main(args: Array[String]): Unit = { val s = "{{a61,a2,a3},{b ...