http://ipmitool.sourceforge.net/

Last updated Thu Apr 26 09:08:52 PDT 2007 
Revision 1.21

· Home
· Download
· Documentation
· Mailing List
· Sourceforge

Introduction

IPMItool is a utility for managing and configuring devices that support the Intelligent Platform Management Interface (IPMI) version 1.5 and version 2.0 specifications. IPMI is an open standard for monitoring, logging, recovery, inventory, and control of hardware that is implemented independent of the main CPU, BIOS, and OS. The service processor (or Baseboard Management Controller, BMC) is the brain behind platform management and its primary purpose is to handle the autonomous sensor monitoring and event logging features.

The ipmitool program provides a simple command-line interface to this BMC. It features the ability to read the sensor data repository (SDR) and print sensor values, display the contents of the System Event Log (SEL), print Field Replaceable Unit (FRU) inventory information, read and set LAN configuration parameters, and perform remote chassis power control.

It was originally written to take advantage of IPMI-over-LAN interfaces but is also capable of using a system interface as provided by a kernel device driver such as OpenIPMIon Linux and BMC on Solaris 10 or the new OpenIPMI-compatible driver in FreeBSD.

 Yes,it's a too long time not to update.

Actually, there is another utility called ipmiutil like above two tools.You can find sth about it here:

http://ipmiutil.sourceforge.net/

It's also not up-to-date comparing to freeipmi.

Here is the reason why Fengguang turns from ipmitool to freeipmi的更多相关文章

  1. TOJ 1191. The Worm Turns

    191.   The Worm Turns Time Limit: 1.0 Seconds   Memory Limit: 65536K Total Runs: 5465   Accepted Run ...

  2. The Worm Turns

    The Worm Turns Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  3. TJU ACM-ICPC Online Judge—1191 The Worm Turns

    B - The Worm Turns Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Su ...

  4. bzoj 1783: [Usaco2010 Jan]Taking Turns

    1783: [Usaco2010 Jan]Taking Turns Description Farmer John has invented a new way of feeding his cows ...

  5. HDU 2782 The Worm Turns (DFS)

    Winston the Worm just woke up in a fresh rectangular patch of earth. The rectangular patch is divide ...

  6. ZOJ 1056 The Worm Turns

    原题链接 题目大意:贪吃蛇的简化版,给出一串操作命令,求蛇的最终状态是死是活. 解法:这条蛇一共20格的长度,所以用一个20个元素的队列表示,队列的每个元素是平面的坐标.每读入一条指令,判断其是否越界 ...

  7. 【HDOJ】2782 The Worm Turns

    DFS. /* 2782 */ #include <iostream> #include <queue> #include <cstdio> #include &l ...

  8. [bzoj1783] [Usaco2010 Jan]Taking Turns

    题意: 一排数,两个人轮流取数,保证取的位置递增,每个人要使自己取的数的和尽量大,求两个人都在最优策略下取的和各是多少. 注:双方都知道对方也是按照最优策略取的... 傻逼推了半天dp......然后 ...

  9. bzoj 1783: [Usaco2010 Jan]Taking Turns【贪心+dp】

    不知道该叫贪心还是dp 倒着来,记f[0][i],f[1][i]分别为先手和后手从n走到i的最大值.先手显然是取最大的,当后手取到比先手大的时候就交换 #include<iostream> ...

随机推荐

  1. Python学习案例

    例1.求101到200之间所有的质数,并打印总数. 说明:除去1和它本身之外,不能被其他数整除,就是质数. #!/bin/python #-*- coding:utf-8 -*- #使用集合法 l = ...

  2. Oracle中Restore和Recovery的区别

    一.参考解释一 在Oracle的备份与恢复的知识点中,经常会出现Restore 和 Recovery两个词. 由于这两个词在字典中的解释很接近,困扰了我很久.直到我在Oracle的官方文档中看到了以下 ...

  3. 1,python初识

    什么是变量? 变量:将程序的中间结果暂时存储起来,以便后续程序调用. 什么是字符串类型? python中被引号引起来的数据就是字符串.字符串类型,也简称str类型. 在python中 int是什么? ...

  4. Configure Always On Availability Group for SQL Server on Ubuntu

    下面简单介绍一下如何在Ubuntu上一步一步创建一个SQL Server AG(Always On Availability Group),以及配置过程中遇到的坑的填充方法. 目前在Linux上可以搭 ...

  5. nodejs 如何发送一个带JSON的GET请求?

    GET /megacorp/employee/_search { "aggs" : { "all_interests" : { "terms" ...

  6. Python第三方库之openpyxl(6)

    Python第三方库之openpyxl(6) 折线图 折线图允许在固定轴上绘制数据,它们类似于散列图,主要的区别在于,在折线图中,每个数据序列都是根据相同的值绘制的,不同的轴可以用于辅助轴,与条形图类 ...

  7. CentOS下,mysql服务启动失败

    mysql服务启动失败,可以使用排除法查找原因: 如果修改了my.cnf后重启mysql服务失败,大多数情况下都是配置文件有错误, 可以通过备份原来的配置文件,然后将配置文件清空,只剩下[mysqld ...

  8. 【JavaScript 8—基础知识点】:DOM

    一.总体概述 1.1,什么是DOM DOM(Document Object Model):D(文档):整个web加载的网页文档:O(对象):类似于window对象之类的东西,可以调用属性和方法,在这里 ...

  9. [BZOJ2118] 墨墨的等式(最短路)

    传送门 好神啊.. 需要用非负数个a1,a2,a3...an来凑出B 可以知道,如果一个数x能被凑出来,那么x+a1,x+a2.......x+an也都能被凑出来 那么我们只需要选择a1~an中任意一 ...

  10. Codeforces787D - Legacy

    Description \(n(n\leq10^5)\)个点构成的有向图,有\(m(m\leq10^5)\)条连通信息,信息有三种: 1 u v w,表示存在一条边权为\(w\)的有向边\((u,v) ...