POJ 1949 Chores(DAG上的最长路 , DP)
题意:
给定n项任务, 每项任务的完成用时t和完成每项任务前需要的k项任务, 求把所有任务完成的最短时间,有当前时间多项任务都可完成, 那么可以同时进行。
分析:
这题关键就是每项任务都会有先决条件, 要完成该项任务a必须先完成他的先决条件。
所以对于每个先决条件, 我们构建一条有向边到任务本身, 然后因为要求一个最小值, 按照最长路的方式松弛(dis[v] >= dis[u] + d, u是v的先决条件, d是v的完成时间,我们以边的终点完成时间作为边的权), 遇到没有出度的边记录答案。
方法一:最长路(2016ms)
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<stack>
#include<vector>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
const int inf = 1e9 + ;
const int maxn = + ;
int n, m;
vector<int> G[maxn];
int d[maxn]; //每条边以终点时间作为权值
int dis[maxn], vis[maxn];
int spfa(){
int ans = -inf;
fill(dis, dis+maxn, -inf); //求最长路
queue<int> q;
dis[] = ;
q.push();//0点入队
vis[] = ;
while(!q.empty()){
int u = q.front();
for(int i = ; i < G[u].size(); i++){
int v = G[u][i]; if(dis[v] < dis[u] + d[v]){
dis[v] = dis[u] + d[v];//每条边以终点时间作为权值
if(G[v].size() == ) {//如果没有出边, 说明它不会对后面有任何影响, 它可能就是答案之一
ans = max(dis[v], ans);//直接更新答案
continue;
}
if(!vis[v]){
vis[v] = ;
q.push(v);
}
}
}
vis[u] = ;
q.pop();
}
return ans;
}
int main()
{
scanf("%d", &n);
_rep(i,,n){
scanf("%d", &d[i]);
int k, v;
scanf("%d", &k);
if(k == ){
G[].push_back(i);//假设有一个0点连向所有入度为0的点, 方便处理
}else{
rep(j,,k){
scanf("%d", &v);
G[v].push_back(i);
}
}
}
printf("%d\n",spfa() );
}
方法二 DP(344ms)
那么我们可以转化一下,假设该项任务有k项先决条件
dp[i]代表完成该项任务的最早时间, 最后找出最大的dp[i]就是答案。
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<stack>
#include<vector>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
const int inf = 1e9 + ;
const int maxn = + ;
int worktime[maxn], dp[maxn];
int n, m;
int main()
{
// freopen("1.txt","r", stdin);
scanf("%d", &n);
int ans = -inf;
_rep(i,,n){
scanf("%d", &worktime[i]);//工作时间
int k, v;
scanf("%d", &k);
if(k == ){
dp[i] = worktime[i];
}else{
rep(j,,k){
scanf("%d", &v);
dp[i] = max(dp[i] , dp[v] + worktime[i]);//找出最晚的先决条件
}
}
ans = max(ans, dp[i]);
}
printf("%d\n", ans );
}
POJ 1949 Chores(DAG上的最长路 , DP)的更多相关文章
- NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)
本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这 ...
- UVa 10285 最长的滑雪路径(DAG上的最长路)
https://vjudge.net/problem/UVA-10285 题意: 在一个R*C的整数矩阵上找一条高度严格递减的最长路.起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩 ...
- Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】
根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$ 和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...
- uva103(最长递增序列,dag上的最长路)
题目的意思是给定k个盒子,每个盒子的维度有n dimension 问最多有多少个盒子能够依次嵌套 但是这个嵌套的规则有点特殊,两个盒子,D = (d1,d2,...dn) ,E = (e1,e2... ...
- HDU 4109 Instrction Arrangement(DAG上的最长路)
把点编号改成1-N,加一点0,从0点到之前任意入度为0的点之间连一条边权为0的边,求0点到所有点的最长路. SPFA模板留底用 #include <cstdio> #include < ...
- hdu 1224(动态规划 DAG上的最长路)
Free DIY Tour Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 3249 Test for job (有向无环图上的最长路,DP)
解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...
- poj 1949 Chores 最长路
题目链接 求出最长路..... #include <iostream> #include <vector> #include <cstdio> #include & ...
- POJ 1949 Chores (很难想到的dp)
传送门: http://poj.org/problem?id=1949 Chores Time Limit: 3000MS Memory Limit: 30000K Total Submissio ...
随机推荐
- 转-eclipse管理多个workspace
Eclipse作为Java开发中最常用的开发工具,大家都很熟悉了,但是,当你做过很多项目后你会发现你的eclipse的package explorer视图下显示的project超级多,这时你可能会关闭 ...
- 480 Sliding Window Median 滑动窗口中位数
详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...
- Apache Kylin的架构特性
不多说,直接上干货! http://kylin.apache.org/cn/ 可扩展的超快OLAP引擎,提供标准SQL查询接口 支持单机或集群部署,为减少在Hadoop上百亿规模数据查询延迟而设计: ...
- 边框圆角值的问题、white-space、word-wrap、margin对布局的影响
1.边框圆角(border-radius)值的问题 border-radius : 7px 7px 7px 0; 四个值的顺序是左上.右上.右下.左下 2.white-space 规定段落中的文本不换 ...
- spring boot使用jpa查询mysql数据库的视图时不报错,但查询结果数据总是重复第一条
问题描述: 在数据库里查询到的结果是正常显示的 在程序中返回的结果: 解决方法: 添加行号作为主键: 解决! 我明明是前端啊前端,为啥在搞后台....,总感觉我要在向全栈进发,希望自己有朝一日真的能成 ...
- 清理xcode缓存
code版本:8.3.3 iOS版本:10.3.2 移除 Xcode 运行安装 APP 产生的缓存文件(DerivedData) 只要重新运行Xcode就一定会重新生成,而且会随着运行程序的增多,占用 ...
- [Python學習筆記] 在Centos上安裝 Django
曾在模擬器跟Digital Ocean上安裝成功,我在 Digital Ocean上的是CentOS 7 x64,模擬器的則是Centos 6.雖然Centos 本身已經裝好 Python 但是是2. ...
- 小知识~VS2012的xamarin加载失败解决
1 由于Nuget版本过低导致的,工具->扩展和更新->在线更新->对nuget程序包程序器进行升级即可 错误代码: 错误 4 错误: 缺少来自类“NuGet.Visua ...
- (转)编码剖析Spring依赖注入的原理
http://blog.csdn.net/yerenyuan_pku/article/details/52834561 Spring的依赖注入 前面我们就已经讲过所谓依赖注入就是指:在运行期,由外部容 ...
- 常用的-->查找算法与排序算法
顺序查找 从列表第一个元素开始,顺序进行搜索,直到找到为止. 二分查找 从有序列表的候选区data[0:n]开始,通过对待查找的值与候选区中间值的比较,可以使候选区减少一半. li = [1, 2, ...