题目描述

小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述:

  • 农场a比农场b至少多种植了c个单位的作物,
  • 农场a比农场b至多多种植了c个单位的作物,
  • 农场a与农场b种植的作物数一样多。

但是,由于小K的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合。

输入输出格式

输入格式:

第一行包括两个整数 n 和 m,分别表示农场数目和小 K 记忆中的信息数目。

接下来 m 行:

如果每行的第一个数是 1,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至少多种植

了 c 个单位的作物。

如果每行的第一个数是 2,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至多多种植

了 c 个单位的作物。如果每行的第一个数是 3,家下来有 2 个整数 a,b,表示农场 a 终止的

数量和 b 一样多。

输出格式:

如果存在某种情况与小 K 的记忆吻合,输出“Yes”,否则输出“No”。

输入输出样例

输入样例#1: 复制

3 3
3 1 2
1 1 3 1
2 2 3 2
输出样例#1: 复制

Yes

说明

对于 100% 的数据保证:1 ≤ n,m,a,b,c ≤ 10000。

思路:设d[i]表示第i个点的数值。

那么对于约束

  1:d[a]-d[b]>=c

  2:d[a]-d[b]<=c

  3:d[a]=d[b]

让我们稍微变化一下式子

  1:d[b]<=d[a]-c

  2:d[a]<=d[b]+c

  3:d[a]<=d[b]+0,d[b]<=d[a]+0

这不是和最短路中dist的定义很像吗?每个点的距离都小于等于能到他的点的距离+边权。

于是我们将其转化成一个最短路模型。

对于约束

  1:我们连边(a,b,-c).

  2:我们连边(b,a,c).

  3:我们连边(a,b,0),(b,a,0)。

因为d[i]>=0,所以我们建一个起点s,向所有点连一条(s,i,0)的边。

然后d[s]显然=0.

我们发现这样子跑一个最短路就能确定每个点的d值啦

那什么时候是无解呢?当然是无法确定每个点的最短路的时候,也就是图中存在负权环。

我们建完图以后判断是否存在负权环就可以啦。

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100010
using namespace std;
queue<int>que;
int n,m,tot,flag;
int dis[MAXN],vis[MAXN];
int to[MAXN],cap[MAXN],net[MAXN],head[MAXN];
void add(int u,int v,int w){
to[++tot]=v;cap[tot]=w;net[tot]=head[u];head[u]=tot;
}
void spfa(int x){
if(flag) return ;
vis[x]=;
for(int i=head[x];i;i=net[i])
if(dis[to[i]]>dis[x]+cap[i]){
dis[to[i]]=dis[x]+cap[i];
if(vis[to[i]]){ flag=;return ; }
spfa(to[i]);
}
vis[x]=;
}
int main(){
freopen("farm.in","r",stdin);
freopen("farm.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int opt,x,y,z;
scanf("%d",&opt);
if(opt==){
scanf("%d%d%d",&x,&y,&z);
add(x,y,-z);
} else if(opt==){
scanf("%d%d%d",&x,&y,&z);
add(y,x,z);
} else if(opt==){
scanf("%d%d",&x,&y);
add(x,y,);
add(y,x,);
}
}
for(int i=;i<=n;i++) add(,i,);
memset(dis,0x7f,sizeof(dis));
dis[]=;spfa();
if(flag) printf("No");
else printf("Yes");
}
/*
3 3
3 1 2
1 1 3 1
2 2 3 2
*/ /*
10 10
3 9 5
1 6 1 1
1 2 8 0
1 2 8 1
2 4 5 0
1 1 2 1
1 10 5 0
1 10 1 0
2 6 7 0
2 9 3 0
*/

洛谷 P1993 小K的农场的更多相关文章

  1. 洛谷 P1993 小K的农场 解题报告

    P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  2. 洛谷P1993 小K的农场 [差分约束系统]

    题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  3. 洛谷P1993 小 K 的农场

    题目描述 小 K 在 Minecraft 里面建立很多很多的农场,总共 n 个,以至于他自己都忘记了每个 农场中种植作物的具体数量了,他只记得一些含糊的信息(共 m 个),以下列三种形式描 述: 农场 ...

  4. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  5. 洛谷P1993 小K的农场

    思路是差分约束+dfs版SPFA. 首先来思考差分约束的过程,将题目给出的式子进行转化: 农场a比农场b至少多种植了c个单位的作物, SPFA我们考虑跑最短路,那么要让SPFA中满足的式子就是if(d ...

  6. 洛谷P1993 小 K 的农场(查分约束)

    /* 加深一下对查分约束的理解 建图的时候为了保证所有点联通 虚拟一个点 它与所有点相连 权值为0 然后跑SPFA判负环 这题好像要写dfs的SPFA 要不超时 比较懒 改了改重复进队的条件~ */ ...

  7. 洛谷 P1993 小K的农场 题解

    每日一题 day55 打卡 Analysis 这是我们一次考试的T1,但我忘了差分约束系统怎么写了,所以就直接输出Yes混了60分 首先转化题目: 1:表示农场 a 比农场 b 至少多种植了 c 个单 ...

  8. 题解—— 洛谷 p1993 小K的农场(差分约束&负环判断)

    看到题就可以想到差分约束 判断负环要用dfs,bfs-spfa会TLE 4个点 bfs-spfa #include <cstdio> #include <algorithm> ...

  9. 洛谷P1993 小K的农场_差分约束_dfs跑SPFA

    Code: #include<cstdio> #include<queue> using namespace std; const int N=10000+233; const ...

随机推荐

  1. MongoDB Built-In Roles(内置角色)

    1. 数据库用户角色:read.readWrite; 2. 数据库管理角色:dbAdmin.dbOwner.userAdmin: 3. 集群管理角色:clusterAdmin.clusterManag ...

  2. AGC16E Poor Turkeys

    输入样例: 10 10 8 9 2 8 4 6 4 9 7 8 2 8 1 8 3 4 3 4 2 7 输出样例#6: 5 话说这题虽然不是很OI但是确实挺锻炼思维的 一开始以为是用并查集之类的东西维 ...

  3. BFS POJ 3414 Pots

    题目传送门 /* BFS:六种情况讨论一下,BFS轻松解决 起初我看有人用DFS,我写了一遍,TLE..还是用BFS,结果特判时出错,逗了好长时间 看别人的代码简直是受罪,还好自己终于发现自己代码的小 ...

  4. Android 性能优化(10)网络优化( 6)Optimizing General Network Use

    Optimizing General Network Use This lesson teaches you to Compress Data Cache Files Locally Optimize ...

  5. 【转】HIVE UDF UDAF UDTF 区别 使用

    原博文出自于:http://blog.csdn.net/longzilong216/article/details/23921235(暂时) 感谢! 自己写代码时候的利用到的模板   UDF步骤: 1 ...

  6. js jquery 获取服务器控件的三种方法

    由于ASP.NET网页运行后,服务器控件会随机生成客户端id,jquery获取时候不太好操作,google了下,总结有以下3种方法: 服务器控件代码:<asp:TextBox ID=" ...

  7. 简单js图片点击向左滚动

    <style> .b_left{width:50px;height:75px;float:left;background:url(img/left_right.png) no-repeat ...

  8. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

  9. 添加telnet命令

    打开控制面板,打开程序和功能,看到左边有个“打开或关闭Windows功能 ,打开找到telnet客户端,把这2项都勾选上,然后确定就可以了 注意,如果只要telnet别人的话,就选telnet客户端. ...

  10. SpringBoot中如何使用jpa和jpa的相关知识总结

    jpa常用的注解: 注解 解释 @Entity 声明类为实体或表. @Table 声明表名. @Basic 指定非约束明确的各个字段. @Embedded 指定类或它的值是一个可嵌入的类的实例的实体的 ...