\(\\\)

Description


给出一棵 \(n\) 个节点以 \(1\) 为根的树,一个节点的覆盖半径是 \(1\) ,点有点权 \(val_x\) 。

选择一些点,使得点权和最小,同时每个节点要么被选择要么被周围的点覆盖。

  • \(n\le 1500,0\le val_x\le 10^4\)

\(\\\)

Solution


树形DP 的讨论。

注意到覆盖有可能呈现出两层都没有选点的情况 (下面被子树覆盖,上面被父节点覆盖),所以状态设计要注意。

设\(f[i][0/1/2]\),表示节点 \(i\) 及其子树的覆盖代价,明确定义:

  • \(0\) 表示选择自己,覆盖整个子树的最小代价
  • \(1\) 表示第 \(i\) 个节点被自己的子树的根节点覆盖,不选择自己的最小代价
  • \(2\) 表示第 \(i\) 个节点被父节点覆盖,此时当前节点的所有子树都已经完成覆盖的最小代价

转移讨论起来就很方便了。

\(0\) :显然要选自己,所以所有子树选什么都合法,对每个子树累加 \(min(f[v][0],f[v][1],f[v][2])\) 。

\(2\):不选自己,子树内部显然不能再向当前点提出需求,所以对子树累加 \(min(f[v][0],f[v][1])\) 。

\(1\) 的转移有点意思。

如果我们贪心的选,选择 \(0\) 状态最小的子树,剩下的子树都选 \(1\) 状态,不一定是最优的。

因为这个 \(0\) 状态最小的子树,他的 \(1\) 状态可能会更小的多,这个差值完全能够允许另一个 \(1\) 状态变成 \(0\) 状态。

\(\\\)

所以考虑替换, \(yy\) 出来一个比较好的写法。

先对所有子树求出 \(sum=min(f[v][0],f[v][1])\) 。

同时维护 \(tmp=min(\ f[v][0]-\min(f[v][0],f[v][1])\ )\)。

\(\\\)

这个 \(sum\) 的含义是,不考虑子树覆盖当前节点, 子树内部覆盖的最小值,可以发现其实就是 \(f[u][2]\) 。

\(tmp\) 的含义就是,把这个 \(sum\) 集合里的任意一个点不管之前选的什么,现在变成 \(0\) 状态的最小代价。

如果之前求 \(sum\) 的时候选了一个 \(0\) 状态,那么这个 \(tmp\) 显然是 \(0\) 。

如果之前没有选到任意一个 \(0\) 状态,那么这个 \(tmp\) 就是所有的 \(1\) 状态里,变成 \(0\) 状态的最小代价。

所以有 \(f[v][1]=f[v][2]+tmp\) 。

\(\\\)

Code


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1510
#define gc getchar
#define R register
#define inf 2000000000
using namespace std; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,m,tot,hd[N],f[N][3],val[N]; struct edge{int to,nxt;}e[N<<1]; inline void add(int u,int v){
e[++tot].to=v; e[tot].nxt=hd[u]; hd[u]=tot;
} //0: 选自己
//1: 选子树内覆盖自己
//2:选父节点覆盖自己 void dfs(int u,int fa){
int mn=inf;
f[u][0]=val[u]; f[u][2]=0;
for(R int i=hd[u],v;i;i=e[i].nxt)
if((v=e[i].to)!=fa){
dfs(v,u);
f[u][0]+=min(f[v][2],min(f[v][1],f[v][0]));
f[u][2]+=min(f[v][1],f[v][0]);
mn=min(mn,f[v][0]-min(f[v][1],f[v][0]));
}
f[u][1]=f[u][2]+mn;
} int main(){
n=rd();
memset(f,0x3f,sizeof(f));
for(R int i=1,u,cnt;i<=n;++i){
u=rd(); val[u]=rd(); cnt=rd();
for(R int j=1,v;j<=cnt;++j){v=rd();add(u,v);add(v,u);}
}
dfs(1,0);
printf("%d\n",min(f[1][0],f[1][1]));
return 0;
}

[ SDOI 2006 ] 保安站岗的更多相关文章

  1. 【Luogu2458】保安站岗(动态规划)

    [Luogu2458]保安站岗(动态规划) 题面 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地 ...

  2. C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP

    P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...

  3. 【题解】保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006]

    [题解]保安站岗[P2458]皇宫看守[LOJ10157][SDOI2006] 传送门:皇宫看守\([LOJ10157]\) 保安站岗 \([P2458]\) \([SDOI2006]\) [题目描述 ...

  4. Luogu P2458 [SDOI2006]保安站岗(树形dp)

    P2458 [SDOI2006]保安站岗 题意 题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下 ...

  5. 洛谷【P2458】[SDOI2006]保安站岗 题解 树上DP

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  6. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  7. 洛谷P2458 保安站岗

    传送门啦 分析: 树形dp刚刚入门,这是我做的第一个一个点同时受父亲节点和儿子节点控制的题目. 由于这个题中某一个点放不放保安与父亲和儿子都有关系(因为线段的两个端点嘛),所以我们做题时就要考虑全面. ...

  8. Luogu P2458 [SDOI2006]保安站岗【树形Dp】

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  9. [Luogu2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

随机推荐

  1. spring boot file上传

    用Spring Boot写读取Excel文件小工具的时候遇到的一些小坑已经填平,复制即可满足普通的文件上传功能POI方面只需一个包,其他通用包工程中一般都会带TIPS:前端为了扩展我用ajax异步请求 ...

  2. Ubuntu 16.04安装7zip的图形界面工具PeaZip

    其实PeaZip不是7zip的图形界面工具,而是一整套方案,里面包括了7z格式的解压缩等. PeaZip Linux版本只有32位包,如果你使用的是64位Ubuntu系统,那么先打开终端运行下面的命令 ...

  3. ArcGIS 教程:Workflow Manager 高速浏览

    应用程序概述 Workflow Manager 用户界面提供了用于在整个作业的生命周期中创建和管理作业的工具. 下面全部信息将会在本帮助文档的兴许章节中进行具体的说明. 文件菜单 新建 - 在系统中创 ...

  4. 后台进程管理工具---supervisor

    supervisor是一个linux下的进程管理工具,有时须要开发一些后台服务类的程序.这类程序通常不能由于意外挂掉.所以最好能在出现意外挂掉的情况下可以重新启动,继续服务. 之前我一直採用创建dae ...

  5. Python的lambda函数与排序

    Python的lambda函数与排序 2010-03-02 15:02 2809人阅读 评论(0) 收藏 举报 lambdapythonlistlispclass工作   目录(?)[+]   前几天 ...

  6. Mac SavePanel 保存文件的GUI代码

    // Move the recorded temporary file to a user-specified location (视频文件另存储过程,依据用户选择的路径和文件保存名) NSSaveP ...

  7. iOS10 优化APP首次安装网络权限提示方案

    我刚经历了一场末日(停电),特别是在你想写文档的时候... 言归正传,今天的问题是解决iOS10系统下首次按钮APP弹出的网络权限提示所带来了问题以及优化. 起因 查了相关文章知道由于大陆工信部出台的 ...

  8. [Codeforces 466C] Number of Ways

    [题目链接] https://codeforces.com/contest/466/problem/C [算法] 维护序列前缀和 , 枚举中间一段即可 , 详见代码 时间复杂度 : O(N) [代码] ...

  9. python-----获取ip的两种方法

    方法一: 通常使用socket.gethostbyname()方法即可获取本机IP地址,但有时候获取不到(比如没有正确设置主机名称),示例代码如下: import socket # 获取本机计算机名称 ...

  10. SQLServer 存储过程 SET NOCOUNT { ON | OFF } 的使用

    在JDBC中调用 sql server 的存储过程时“该语句没有返回结果集”异常: 解决方法:在存储过程首行加上   SET NOCOUNT ON   使返回的结果中不包含有关受 Transact-S ...