【题目描述】

摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统。和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米。但其真正高科技之处在于,它能够回答形如“给定区域内有多少名用户?”的问题。

在定位系统中,世界被认为是一个W×W的正方形区域,由1×1的方格组成。每个方格都有一个坐标(x,y),1<=x,y<=W。坐标的编号从1开始。对于一个4×4的正方形,就有1<=x<=4,1<=y<=4(如图):

请帮助Mokia公司编写一个程序来计算在某个矩形区域内有多少名用户。

【输入格式】

有三种命令,意义如下:

命令 参数 意义
0 W 初始化一个全零矩阵。本命令仅开始时出现一次。
1 x y A 向方格(x,y)中添加A个用户。A是正整数。
2 X1 Y1 X2 Y2 查询X1<=x<=X2,Y1<=y<=Y2所规定的矩形中的用户数量
3 无参数 结束程序。本命令仅结束时出现一次。

【输出格式】

对所有命令2,输出一个一行整数,即当前询问矩形内的用户数量。

【输入样例】

0 4

1 2 3 3

2 1 1 3 3

1 2 2 2

2 2 2 3 4

3

【输出样例】

3

5

【提示】

输入 输出 意义
0 4   大小为4×4的全零正方形
1 2 3 3   向(2,3)方格加入3名用户
2 1 1 3 3   查询矩形1<=x<=3,1<=y<=3内的用户数量
  3 查询结果
1 2 2 2   向(2,2)方格加入2名用户
2 2 2 3 4   查询矩形2<=x<=3,2<=y<=4内的用户数量
  5 查询结果
3   终止程序

【数据规模】

1<=W<=2000000

1<=X1<=X2<=W

1<=Y1<=Y2<=W

1<=x,y<=W

0<A<=10000

命令1不超过160000个。

命令2不超过10000个。

【来源】

Balkan Olypiad in Informatics 2007,Mokia

Solution

cdq分支模板题

#include <stdio.h>
#include <algorithm>
int w, C[2000010], ans[10010];
struct Que{
int x, y, v, tp, _id;
}q[200010];
bool cmp(Que a, Que b) {return a.x < b.x;}
inline void add(int i, int d){
for(; i <= w; i += i & (-i))
C[i] += d;
}
inline int sum(int i){
int res = 0;
for(; i; i -= i & (-i))
res += C[i];
return res;
}
void cdq(int l, int r){
if(l == r) return;
int mid = l + r >> 1;
cdq(l, mid), cdq(mid + 1, r);
std::sort(q + l, q + mid + 1, cmp);
std::sort(q + mid + 1, q + r + 1, cmp);
int j = l;
for(int i = mid + 1; i <= r; i++){
for(; j <= mid && q[j].x <= q[i].x; j++)
if(q[j].tp == 1) add(q[j].y, q[j].v);
if(q[i].tp == 2) ans[q[i]._id] += q[i].v * sum(q[i].y);
}
for(int i = l; i < j; i++)
if(q[i].tp == 1) add(q[i].y, -q[i].v);
}
int main(){
int op, a, b, c, d, id = 0, tot = 0;
freopen("mokia.in", "r", stdin), freopen("mokia.out", "w", stdout);
while(scanf("%d", &op) && op != 3){
if(op == 0)
scanf("%d", &w);
else if(op == 1){
scanf("%d%d%d", &a, &b, &c);
q[++id] = (Que) {a, b, c, 1, 0};
}
else{
++tot;
scanf("%d%d%d%d", &a, &b, &c, &d);
q[++id] = (Que) {a - 1, b - 1, 1, 2, tot};
q[++id] = (Que) {c, d, 1, 2, tot};
q[++id] = (Que) {a - 1, d, -1, 2, tot};
q[++id] = (Que) {c, b - 1, -1, 2, tot};
}
}
cdq(1, id);
for(int i = 1; i <= tot; i++)
printf("%d\n", ans[i]);
fclose(stdin), fclose(stdout);
return 0;
}

  

cogs1752[boi2007]mokia 摩基亚 (cdq分治)的更多相关文章

  1. Luogu P4390 [BOI2007]Mokia 摩基亚 | CDQ分治

    题目链接 $CDQ$分治. 考虑此时在区间$[l,r]$中,要计算$[l,mid]$中的操作对$[mid+1,r]$中的询问的影响. 计算时,排序加上树状数组即可. 然后再递归处理$[l,mid]$和 ...

  2. P4390 [BOI2007]Mokia 摩基亚 (CDQ解决三维偏序问题)

    题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫米.但其真正高科 ...

  3. 洛谷 P4390 [BOI2007]Mokia 摩基亚 解题报告

    P4390 [BOI2007]Mokia 摩基亚 题目描述 摩尔瓦多的移动电话公司摩基亚(\(Mokia\))设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户 ...

  4. 【BZOJ1176】[BOI2007]Mokia 摩基亚

    [BZOJ1176][BOI2007]Mokia 摩基亚 题面 bzoj 洛谷 题解 显然的\(CDQ\)\(/\)树套树题 然而根本不想写树套树,那就用\(CDQ\)吧... 考虑到点\((x1,y ...

  5. [BOI2007]Mokia 摩基亚

    Description: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如"用户C的位置在哪?"的问题,精确到毫 ...

  6. [BOI2007]Mokia 摩基亚(CDQ分治)

    upd:\((x1,y1)(x2,y2)\)表示以\((x1,y1)\)为左上端点 \((x2,y2)\)为右下端点的矩形 本来以为是一道二位树状数组的模板,但是看数据范围之后就放弃了,边界既然到了2 ...

  7. 【cdq分治】【P4390】[BOI2007]Mokia 摩基亚

    Description 给你一个 \(W~\times~W\) 的矩阵,每个点有权值,每次进行单点修改或者求某子矩阵内权值和,允许离线 Input 第一行是两个数字 \(0\) 和矩阵大小 \(W\) ...

  8. [洛谷P4390][BOI2007]Mokia 摩基亚

    题目大意: 维护一个W*W的矩阵,每次操作可以增加某格子的权值,或询问某子矩阵的总权值. 题解:CDQ分治,把询问拆成四个小矩形 卡点:无 C++ Code: #include <cstdio& ...

  9. P4390 [BOI2007]Mokia 摩基亚

    传送门 对于一个询问 $(xa,ya),(xb,yb)$,拆成 $4$ 个询问并容斥一下 具体就是把询问变成求小于等于 $xb,yb$ 的点数,减去小于等于 $xa-1,yb$ 和小于等于 $xb,y ...

随机推荐

  1. [转]广义正交匹配追踪(gOMP)

    广义正交匹配追踪(Generalized OMP, gOMP)算法可以看作为OMP算法的一种推广,由文献[1]提出,第1作者本硕为哈工大毕业,发表此论文时在Korea University攻读博士学位 ...

  2. bryce1010的图像处理课程设计

    一.要求 完成课程教学中的大部分图像处理功能 二.平台 Qt c++ windows或者linux下 三.思路收集 1.QPixmap类 (一)QPixmap和QImage的区别 QPixmap是专门 ...

  3. 构造 HDOJ 5399 Too Simple

    题目传送门 题意:首先我是懂了的,然后我觉得很难讲清楚就懒得写了,关键理解f1(f2(fm(i)))=i,不懂的戳这里构造:如果fi(j)不是映射到(1~n),重复或者不在范围内的肯定无解.还有没有- ...

  4. 题解报告:hdu 5750 Dertouzos(最大真约数、最小素因子)

    Problem Description A positive proper divisor is a positive divisor of a number n, excluding n itsel ...

  5. 转】MongoDB 自动分片 auto sharding

    原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/page/4/ 感谢! MongoDB 自动分片 auto shard ...

  6. .Net应用自定义鼠标样式

    (调用系统API的方法) 1.引用命名空间 using System.Runtime.InteropServices; 命名空间提供各种各样支持 COM 互操作 及平台调用服务的成员.using Sy ...

  7. AJPFX: Java基础多线程(一)

    多线程是Java学习的非常重要的方面,是每个Java程序员必须掌握的基本技能.本文只是多线程细节.本质的总结,并无代码例子入门,不适合初学者理解.初学者学习多线程,建议一边看书.看博文,以便写代码尝试 ...

  8. 大步小步法(BSGS) 学习笔记

    \(\\\) BSGS 用于求解关于 \(x\) 的方程: \[ a^x\equiv b\pmod p\ ,\ (p,a)=1 \] 一般求解的是模意义下的指数,也就是最小非负整数解. \(\\\) ...

  9. vue--组件中的自定义事件

    父组件通过props向子组件传递数据,子组件通过自定义事件向父组件传递信息. 在子组件中通过$emit触发事件,父组件在直接使用子组件的地方使用v-on(即@)来监听子组件触发的事件. 举例:(不知道 ...

  10. html添加css——样式选择器

    如何给html添加样式.两种方法: 一.新建立一个css样式表,与原html同目录,然后通过link标签链接.如:<link type="text/css" rel=&quo ...