https://www.bnuoj.com/v3/contest_show.php?cid=9149#problem/G

【题意】

给定一个数组a,问这个数组有多少个子序列,满足子序列中任意两个相邻数的差(绝对值)都不大于d.

【思路】

首先,朴素的dp思想:

dp[i]为以a[i]结尾的子问题的答案,则dp[i]=sum(dp[k]),k<i&&|a[k]-a[i]|<=d

但是时间复杂度为O(n^2),会超时。

我们可以这样想:

如果数组a排好序后,dp[i]就是区间(a[i]-d,a[i]+d)的结果和(直接把a[i]加到原数组后面)

所以自然而然就想到了用树状数组,区间求和求出dp[i],然后单点修改dp[i]以备后用。

这样时间复杂度就变成了O(nlogn)

另外要注意原来是很稀疏的大数据,我们要离散化压缩状态(排序去重)

先把长度为1的姑且认为是完美子序列,然后再减去n,怎样状态就很好转移,所以看到代码里fi初始值为1.

【Accepted】

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath> using namespace std;
const int mod=;
const int maxn=1e5+;
int n,d;
int a[maxn],h[maxn],tree[maxn];
int lowbit(int x)
{
return x&(-x);
}
void add(int k,int x)
{
while(k<=n)
{
tree[k]=(tree[k]+x)%mod;
k+=lowbit(k);
}
}
int query(int k)
{
int res=;
while(k)
{
res=(res+tree[k])%mod;
k-=lowbit(k);
}
return res;
}
int query(int l,int r)
{
return (query(r)-query(l-)+mod)%mod;
}
int main()
{
while(~scanf("%d%d",&n,&d))
{
memset(tree,,sizeof(tree));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
h[i]=a[i];
}
sort(h+,h+n+);
int cnt=unique(h+,h+n+)-h-;
int ans=;
for(int i=;i<=n;i++)
{
int fi=;
int l=lower_bound(h+,h+cnt+,a[i]-d)-h;
int r=upper_bound(h+,h+cnt+,a[i]+d)-h-;
int pos=lower_bound(h+,h+cnt+,a[i])-h;
fi=(fi+query(l,r))%mod;
ans=(ans+fi)%mod;
add(pos,fi);
}
ans=(ans-n%mod+mod)%mod;
cout<<ans<<endl;
}
return ;
}

【知识点】

lower_bound返回第一个大于等于查找值的迭代器指针

upper_bound返回第一个大于(没有等于)查找值的迭代器指针

【(待重做)树状数组+dp+离散化】Counting Sequences的更多相关文章

  1. WUSTOJ 1337: Car race game(C)树状数组,离散化

    题目链接:1337: Car race game 参考资料:⑴ Car race game 树状数组 棋煜,⑵ 树状数组,⑶ 离散化 补充资料:⑴ qsort,⑵ 二分查找 Description B ...

  2. hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)

    Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  3. 【XSY2727】Remove Dilworth定理 堆 树状数组 DP

    题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...

  4. 【POJ】3378 Crazy Thairs(树状数组+dp+高精)

    题目 传送门:QWQ 分析 题意:给个数列,求有多少五元上升组 考虑简化一下问题:如果题目求二元上升组怎么做. 仿照一下逆序对,用树状数组维护一下就ok了. 三元怎么做呢? 把二元的拓展一位就可以了, ...

  5. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

  6. hdu 4991(树状数组+DP)

    Ordered Subsequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  7. 【树状数组+dp】HDU 5542 The Battle of Chibi

    http://acm.hdu.edu.cn/showproblem.php?pid=5542 [题意] 给定长为n的序列,问有多少个长为m的严格上升子序列? [思路] dp[i][j]表示以a[i]结 ...

  8. The 2015 China Collegiate Programming Contest -ccpc-c题-The Battle of Chibi(hdu5542)(树状数组,离散化)

    当时比赛时超时了,那时没学过树状数组,也不知道啥叫离散化(貌似好像现在也不懂).百度百科--离散化,把无限空间中无限的个体映射到有限的空间中去,以此提高算法的时空效率. 这道题是dp题,离散化和树状数 ...

  9. HDU 3333 | Codeforces 703D 树状数组、离散化

    HDU 3333:http://acm.hdu.edu.cn/showproblem.php?pid=3333 这两个题是类似的,都是离线处理查询,对每次查询的区间的右端点进行排序.这里我们需要离散化 ...

随机推荐

  1. 关于minSdkVersion="8" 升级appcompat_v7包主题"Theme.AppCompat.Light"等不存在的问题

    关于minSdkVersion="8" 升级后,又不想用 appcompat_v7包, 那么appcompat_v7主题"Theme.AppCompat.Light&qu ...

  2. 转 PHP in_array() 函数

    实例 在数组中搜索值 "Glenn" ,并输出一些文本: <?php $people = array("Bill", "Steve", ...

  3. 440 K-th Smallest in Lexicographical Order 字典序的第K小数字

    给定整数 n 和 k,找到 1 到 n 中字典序第 k 小的数字.注意:1 ≤ k ≤ n ≤ 109.示例 :输入:n: 13   k: 2输出:10解释:字典序的排列是 [1, 10, 11, 1 ...

  4. E. Dasha and Puzzle 数学题

    http://codeforces.com/contest/761/problem/E 给出一颗树,要求在坐标系中用平行于坐标轴的线描绘出来. 要求边不能相交,而且点的坐标唯一. 注意到2^1 + 2 ...

  5. AJPFX关于java 知识点的集合

    1 .对象的初始化 (1 )非静态对象的初始化 在创建对象时,对象所在类的所有数据成员会首先进行初始化. 基本类型:int 型,初始化为0. 如果为对象:这些对象会按顺序初始化. ※在所有类成员初始化 ...

  6. hihocoder编程练习赛52-2 亮灯方案

    思路: 状态压缩dp.实现: #include <bits/stdc++.h> using namespace std; typedef long long ll; ; ] = {, , ...

  7. 使用Jenkins进行android项目的自动构建(1)

    环境搭建 1. 下载JDK,安装,并将JDK的安装目录加入到环境变量JAVA_HOME,将JDK的bin目录加入到环境变量PATH. 2. 下载Android SDK,解压,并将SDK的安装目录加入到 ...

  8. linux centos7 tomcat8 配置成服务启动

    1. tomact 解压到/usr/local/tomcat下 2.vim /usr/local/tomcat/bin/catalina.sh 在OS specific support.前加上 (注意 ...

  9. A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

    作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/6817781.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须 ...

  10. 最后一个非零数字(POJ 1604、POJ 1150、POJ 3406)

    POJ中有些问题给出了一个长数字序列(即序列中的数字非常多),这个长数字序列的生成有一定的规律,要求求出这个长数字序列中某个位上的数字是多少.这种问题通过分析,找出规律就容易解决. 例如,N!是一个非 ...