ZOJ 3329 期望DP
题目大意:
给定3个已经规定好k1,k2,k3面的3个色子,如果扔到a,b,c则重新开始从1 计数,否则不断叠加所有面的数字之和,直到超过n,输出丢的次数的数学期望
我们在此令dp[]数组记录从当前数值到结束的数学期望
假如有3个面数都为2的色子
那么dp[i] = 1.0 / 2/2/2 * dp[0] + 1.0/8*dp[i+3] +3.0/8*dp[i+4]+3.0/8*dp[i+5]+1.0/8*dp[i+6] + 1
当然那些下标大于i的dp值均为0
可是我们这样从后往前推会导致无法计算dp[0]的数值,没法推
从新寻找规律,可以看做
dp[i] = a[i] * dp[0] + b[i]; 1式
dp[i] = p0 * dp[0] + ∑(dp[i+k]*p[k]) + 1; 2式
1式代人2式
dp[i] = p0*dp[0] + ∑((a[i+k]*dp[0]+b[i+k]))*p[k])+1
dp[i] =( p0+∑(a[i+k]*p[k])) dp[0] + ∑(b[i+k]*p[k]) +1
所以a[i] =p0+∑(a[i+k]*p[k]) b[i] = ∑(b[i+k]*p[k]) +1
这样我们由后往前推不断得到所有的a[i]和b[i]值
dp[0] = a[0]*dp[0]+b[0]
这样我们得到a[0],b[0]就很容易得到dp[0]的值了
这是这段叠加处求a,b数组的代码
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=n;i>=0;i--){
for(int j=3;j<=maxn;j++)
{
a[i]+=a[i+j] * pro[j];
b[i]+=b[i+j] * pro[j];
}
a[i]+=1.0/k1/k2/k3;
b[i]+=1;
}
#include <cstdio>
#include <cstring> using namespace std;
double pro[],a[],b[]; int main()
{
int n,k1,k2,k3,d,e,f,T;
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&d,&e,&f); int maxn = k1+k2+k3;
memset(pro,,sizeof(pro));
for(int i=;i<=k1;i++){
for(int j=;j<=k2;j++){
for(int k=;k<=k3;k++)
if(i!=d||j!=e||k!=f)
pro[i+j+k]++;
}
} for(int i=;i<=maxn;i++)
pro[i] = pro[i]*1.0/k1/k2/k3; memset(a,,sizeof(a));
memset(b,,sizeof(b));
for(int i=n;i>=;i--){
for(int j=;j<=maxn;j++)
{
a[i]+=a[i+j] * pro[j];
b[i]+=b[i+j] * pro[j];
}
a[i]+=1.0/k1/k2/k3;
b[i]+=;
} double ans = b[] / (-a[]);
printf("%.10f\n",ans);
}
}
ZOJ 3329 期望DP的更多相关文章
- zoj 3329 概率dp
题意:有三个骰子,分别有k1,k2,k3个面.每个面值为1--kn每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和.当分数大于n时结束.求游戏的期望步数.初始分数为0 链接 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- poj 2096 , zoj 3329 , hdu 4035 —— 期望DP
题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
随机推荐
- jquery各种选择器示例
$("#itemExpressionHidden>b:last") 选择id为itemExpressionHidden中的最后一个b标签 $("#itemExp ...
- JDK集合框架--LinkedList
上一篇讲了ArrayList,它有一个"孪生兄弟"--LinkedList,这两个集合类总是经常会被拿来比较,今天就分析一下LinkedList,然后总结一下这俩集合类的不同 首先 ...
- AJPFX关于StringBuffer类的总结
StringBuffer类一.字符串缓冲区,是一个容器.没有子类不能继承.特点:长度可变化:可操作多个数据类型:可通过toString()变成字符串.二.存储方法1.StringBuffer appe ...
- 机器学习-牛顿方法&指数分布族&GLM
本节内容 牛顿方法 指数分布族 广义线性模型 之前学习了梯度下降方法,关于梯度下降(gradient descent),这里简单的回顾下[参考感知机学习部分提到的梯度下降(gradient desce ...
- Objective-C Foundation 框架 Example :Looking for Files 查找文件
Objective-C Foundation 框架 Example :Looking for Files 查找文件 NSFileManager. The NSFileManager class ...
- zabbix企业应用之windows系统安装omsa硬件监控
具体请参考 作者:dl528888http://dl528888.blog.51cto.com/2382721/1421335 大致 1.安装OMSA http://zh.community.de ...
- (转)淘淘商城系列——SSM框架整合之逆向工程
http://blog.csdn.net/yerenyuan_pku/article/details/72758590 我们知道在开发中有些工作是非常耗时但是又没有什么技术含量的,比如创建mapper ...
- .less css 使用 LESS 简化层叠样式表(CSS)的编写(另外一种css框架 sass)
使用 LESS 简化层叠样式表(CSS)的编写 https://less.bootcss.com/ Sass完全兼容所有版本的CSS https://gojs.net/latest/samples/f ...
- 类unix系统 递归删除指定文件
递归删除当前目录下所有以 ._开头的文件 find . -name "._*" | xargs rm -f 或者: find . -name "._*" -ex ...
- JS正则表达式验证(一)
目录: 手机号验证 固定电话验证 手机号验证: 写法[1]--->!(/^1[34578]\d{9}$/.test(phone)):以1开头,第二位可能是3/4/5/7/8等的任意一个,在加上后 ...