何为导数

1 : 如何求一条直线上一点的切线?

what did we learn in high school about what a tangent(切) line is ? :任意一点上的切线都可以有一个方程 y-y0 = k*(x-x0)来表示。

切线:一种极限是当Q趋近于P。->在一条弧线上由P,Q两点如何确定直线PQ,是切线呢?根据定理可得,当一条直线和一条弧线相交于两点的时候这条直线一定不是切线。所以只有当P和Q重合的时候着一条直线才是切线 XP-XQ=Δx , 只有当Δx -> 0 的时候直线PQ才是切线。

当求一条直线的斜率的时候我们就可以用y-y0 = k*(x-x0)来求解。Δx/Δy=k。p点可以用(x,y)来表示同样也可以用(x、f(x))来表示。所以将P、Q都用着一种形式来表示的话我们就可以得到P(x0,f(x0)),Q(x0+Δx,f(x0+Δx))。

    这样的话就应该很熟悉了吧。下面我们求y=1/x的导数。由上述可得k=(y-y0)/(x-x0)==-1/(x0+Δx)*x0 其又名为差商  

问题2:由1/x的切线和x,y轴围成三角形的面积。

同样我们需要在y=1/x上面找出来一点能过普遍表示的点。我们假设这一点为P(X0,Y0).我们已经知道P点的斜率为-1/x0^。同时这条切线也过P点P点的坐标为P(X0,Y0)。所以我们可以通过点斜式y-y0=k*(x-x0) ,求得切线。然后我们只需要求得x轴截距和y轴截距就可以了。我们知道x轴上y=0同理y轴可得x=0。所以我们可以求得截距。此题可解。x=2x0,y=2/x0=2×y0

下面介绍一些记号一些用于表示导数的记号。

问题3:求其导数。Δf / Δx = [(x+Δx)x-xn] / Δx .

  引入:

    二项式定理: junk(垃圾). 为什么说 那些都是junk呢? 我们联系上面的Δf / Δx = [(x+Δx)x-xn] / Δx . 可以看出  xn -xn 消掉了,然后 除了 n*xn-1*Δx只有一个Δx之外其余的都是Δx的平方或平方之上的,因为Δx非常的小,所以可以将剩下的消除掉。所以可以得到 f(x)= xn的导数 f(x) = n*xn-1 .

在大部分的问题中我们都会用到微积分,但是微积分在其中只占了很小的一部分,所以经常会给我们造成一中微积分特别难的感觉。实际上微积分很简单,只是因为其他的知识我们不具备所以才会感觉微积分特别难。

Differentiation 导数和变化率的更多相关文章

  1. 自动微分方法(auto diff)

    学习机器学习的同学在学习过程中会经常遇到一个问题,那就是对目标函数进行求微分,线性回归这类简单的就不说.复杂的如神经网络类那些求导过程的酸爽.像我还是那种比较粗心的人往往有十导九错,所以说自动求导就十 ...

  2. Reading | 《DEEP LEARNING》

    目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...

  3. 数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization)

    数值优化(Numerical Optimization)学习系列-无梯度优化(Derivative-Free Optimization) 2015年12月27日 18:51:19 下一步 阅读数 43 ...

  4. Alink漫谈(十五) :多层感知机 之 迭代优化

    Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总 ...

  5. R语言的导数计算(转)

    转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽 ...

  6. pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分

    参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...

  7. 导数、多元函数、梯度、链式法则及 BP 神经网络

    一元函数的导数 对于函数\(y=f(x)\),导数可记做\(f'(x_0)\).\(y'|x=x_0\)或\(\frac{dy}{dx}|x=x_0 \).定义如下: \[f'(x_0) = \lim ...

  8. Numerical Differentiation 数值微分

    zh.wikipedia.org/wiki/數值微分 数值微分是数值方法中的名词,是用函数的值及其他已知资讯来估计一函数导数的算法. http://mathworld.wolfram.com/Nume ...

  9. Sobel导数

    Sobel 导数 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 Sobel 对图像求导. 如何使用OpenCV函数 Scharr 更准确地计算  核的导数. 原理 Note 以下内容来自于 ...

随机推荐

  1. c#中的多态 c#中的委托

    C#中的多态性          相信大家都对面向对象的三个特征封装.继承.多态很熟悉,每个人都能说上一两句,但是大多数都仅仅是知道这些是什么,不知道CLR内部是如何实现的,所以本篇文章主要说说多态性 ...

  2. U盘 文件被隐藏解决办法

    原地址:http://www.deyi.com/thread-351635-1-1.html 方法:运行cmd( 在任意目录都行)单个文件 :attrib c:\"要修改的文件夹名字&quo ...

  3. mysql使用“.frm”文件恢复表结构

    mysql创建每张表后都会在“mysql安装目录/data/数据库名/”目录下创建一个“表名.frm”文件. 该.frm文件并不能直接打开,但是它可以帮助你恢复你的表结构~~ 具体操作如下: 我现在准 ...

  4. Swift开发教程--怎样播放图片动画

    废话少说,直接上代码: var barsAnim = UIImageView(frame: self.view.frame); barsAnim.animationImages = NSArray() ...

  5. vmware 自动挂起

    用VMware跑虚拟机,经常会出现客户操作系统自己挂起的现象,怀疑是主机自己休眠的设置.设置之后,无效. 后来才发现不是主机休眠设置,还是应该设置客户操作系统中的休眠设置. 在客户机,控制面板  电源 ...

  6. feed流,图片在左还是右的区别是

    feed流设计:那些谋杀你时间APP | 人人都是产品经理 http://www.woshipm.com/pd/773523.html

  7. bind_ip

    https://docs.mongodb.com/manual/reference/configuration-options/index.html 192.168.2.* --23T10:: I C ...

  8. 在C++中使用Libmd5计算字符串或文件的MD5值

    CppMD5Demo.cpp #include <iostream> #include <fstream> #include <chrono> #include & ...

  9. ubuntu docker的安装和使用

    Docker CE for Ubuntu Docker CE for Ubuntu is the best way to install the Docker platform on Ubuntu L ...

  10. CA服务器的搭建

    CA (Certification Authority) 是认证机构的国际通称,它是对数字证书的申请者发放.管理.取消数字证书的机构.CA的作用是检查证书持有者身份的合法性,并签发证书(用数学方法在证 ...