bzoj 4161 Shlw loves matrixI【常系数线性齐次递推】
并不会递推,不过板子挺好背的,只要是类似的递推都能用,但是注意c数组不能使负数
如果除了递推还有常数项的话,就用f[i]-f[i-1]的方式消掉常数项(然后多一个f[i-1]的项)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=4005,mod=1000000007;
int n,m,a[N],ans[N],c[N],d[N],f[N],an;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void jia(int &x,int y)
{
x+=y;
x>=mod?x-=mod:0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void mul(int a[],int b[])
{
memset(d,0,sizeof(d));
for(int i=0;i<=m;i++)
for(int j=0;j<=m;j++)
jia(d[i+j],1ll*a[i]*b[j]%mod);
for(int i=2*m;i>=m;i--)
{
for(int j=0;j<m;j++)
jia(d[i-m+j],1ll*d[i]*c[m-j]%mod);
d[i]=0;
}
for(int i=0;i<=2*m;i++)
a[i]=d[i];
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
c[i]=(read()+mod)%mod;
for(int i=0;i<m;i++)
f[i]=(read()+mod)%mod;
a[1]=1,ans[0]=1;
while(n)
{
if(n&1)
mul(ans,a);
mul(a,a);
n>>=1;
}
for(int i=0;i<m;i++)
jia(an,1ll*f[i]*ans[i]%mod);
printf("%lld\n",an);
return 0;
}
bzoj 4161 Shlw loves matrixI【常系数线性齐次递推】的更多相关文章
- bzoj 4161 Shlw loves matrixI——常系数线性齐次递推
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...
- bzoj 4161: Shlw loves matrixI
Description 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 ...
- BZOJ 4161 Shlw loves matrixI ——特征多项式
矩阵乘法递推的新姿势. 叉姐论文里有讲到 利用特征多项式进行递推,然后可以做到k^2logn #include <cstdio> #include <cstring> #inc ...
- LOJ 2304 「NOI2017」泳池——思路+DP+常系数线性齐次递推
题目:https://loj.ac/problem/2304 看了各种题解…… \( dp[i][j] \) 表示有 i 列.第 j 行及以下默认合法,第 j+1 行至少有一个非法格子的概率,满足最大 ...
- 模板-->常系数线性齐次递推(矩阵快速幂)
如果有相应的OJ题目,欢迎同学们提供相应的链接 相关链接 所有模板的快速链接 Matrix模板 poj_2118_Firepersons,my_ac_code 简单的测试 None 代码模板 /* * ...
- 【Learning】常系数线性齐次递推
给定数列前k项\(h_0...h_{k-1}\),其后的项满足:\(h_i=\sum_{i=1}^kh_{i-j}a_i\),其中\(a_1...a_k\)是给定的系数,求\(h_n\) 数据范围小的 ...
- bzoj4161: Shlw loves matrixI
Description 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计 ...
- 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)
[BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...
- 【BZOJ4161】Shlw loves matrixI
题目描述 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 h(n),并将 ...
随机推荐
- Indri和Terrier搜索引擎的使用
介绍 Indri和Terrier都是开源的搜索引擎,当中Indri作为Lemur项目的一个重要部分,具有强大的查询接口,易建索引,可扩展,高效率等长处.能够在SourceForge Lemur Pro ...
- Oracle创建索引的原则(转)
Oracle 建立索引及SQL优化 数据库索引: 索引有单列索引复合索引之说 如何某表的某个字段有主键约束和唯一性约束,则Oracle 则会自动在相应的约束列上建议唯一索引.数据库索引主要进行提高访问 ...
- 【转载】java sleep和wait的区别的疑惑?
首先,要记住这个差别,"sleep是Thread类的方法,wait是Object类中定义的方法".尽管这两个方法都会影响线程的执行行为,但是本质上是有区别的. Thread.sle ...
- Comparable 和 Comparator的理解
对Comparable 的解释 Comparable是一个排序接口 此接口给实现类提供了一个排序的方法,此接口有且只有一个方法 public int compareTo(T o); compareTo ...
- mysqld与mysqld_safe的区别
文章1: 直接运行mysqld程序来启动MySQL服务的方法很少见,mysqld_safe脚本会在启动MySQL服务器后继续监控其运行情况,并在其死机时重新启动它.用mysqld_safe脚本来启动M ...
- UsbManager, UsbDevice的简单示例
activity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...
- 动态的添加ImageView到LinearLayout中并居中显示
ImageView imageView = new ImageView(mActivity); imageView.setImageResource(R.mipmap.gengduo); Linear ...
- poj 2771 Guardian of Decency 解题报告
题目链接:http://poj.org/problem?id=2771 题目意思:有一个保守的老师要带他的学生来一次短途旅行,但是他又害怕有些人会变成情侣关系,于是就想出了一个方法: 1.身高差距 ...
- 一步一步学Silverlight 2系列(9):使用控件模板
述 Silverlight 2 Beta 1版本发布了,无论从Runtime还是Tools都给我们带来了很多的惊喜,如支持框架语言Visual Basic, Visual C#, IronRuby, ...
- A+B Problem && OJ推荐【持续更新】
目录 List 前言 长郡 Position: code 1. 2. 持续更新,么么哒 List 前言 有没有觉得写这篇文章很奇怪,这个还是有原因的.①很多OJ都有着道题,所以发个博客②这可以介绍很多 ...