51nod 1069【思维】
具体思路来自相关讨论
给个不太严谨的证明思路:
第一步:证明路径可逆,也就是如果(a, b) -> (x, y)可行,则(x, y) - > (a, b)可行
这个比较直观,只需要分别由(a +b, b) (a, a + b), (a - b, b), (a, a - b)推回(a, b)即可:
例如:(a, a - b) - > (b, a - b) - > (b, a) -> (a + b, a) - > (a + b, b) -> (a, b)
(a, a + b)->(2a + b, a + b) - > (2a + b, a)->(a + b, a) ->(a+b, b) ->(a, b)
注意这里也顺手说明了(a, b)->(b, a)可行
第二步:既然路径可逆,那题目的可以这样改写:是否存在点(m, n)使得(a, b) -> (m, n)可行且,(x, y)->(m, n)可行
因为(a, b) -> (b, a)可行,则不失一般性,可假设:a > b
可以这样逐次推导:(a, b) -> (a - b, b) -> (a - 2b, b)-> … ->(a - nb, b),其中, n = a / b, 则,改写一下:
(a, b) - > (a % b, b) ->(b, a % b)
由此联想到欧几里得算法求解最大公约数的过程,不用多说了。。。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{
LL x,y,a,b;
LL g1,g2;
int T;
scanf("%d",&T);
while(T--)
{
cin>>a>>b>>x>>y;
g2=__gcd(a,b);
g1=__gcd(x,y);
if(g1==g2)
puts("Yes");
else
puts("No");
}
return 0;
}
51nod 1069【思维】的更多相关文章
- 51Nod 1069 Nim游戏 (位运算)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1069 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆 ...
- 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)
首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...
- 51NOD 1069 Nim游戏
1069 Nim游戏 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出 ...
- 51Nod 1069:Nim游戏(尼姆博弈)
1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走, ...
- 51nod 1272 思维/线段树
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1272 1272 最大距离 题目来源: Codility 基准时间限制:1 ...
- (博弈论)51NOD 1069 Nim游戏
有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后 ...
- 棋子游戏 51Nod - 1534 思维题
题目描述 波雷卡普和瓦西里喜欢简单的逻辑游戏.今天他们玩了一个游戏,这个游戏在一个很大的棋盘上进行,他们每个人有一个棋子.他们轮流移动自己的棋子,波雷卡普先开始.每一步移动中,波雷卡普可以将他的棋子从 ...
- 51nod 1593 公园晨跑 | ST表(线段树?)思维题
51nod 1593 公园晨跑 有一只猴子,他生活在一个环形的公园里.有n棵树围绕着公园.第i棵树和第i+1棵树之间的距离是 di ,而第n棵树和第一棵树之间的距离是 dn .第i棵树的高度是 hi ...
- 51Nod 1003 阶乘后面0的数量(数学,思维题)
1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...
随机推荐
- 转: 环信联合创始人:App主流反垃圾服务难点和技术实现全解析
转:http://science.china.com.cn/2016-03/24/content_8659834.htm 发布时间: 2016-03-24 13:15:02 | 来源: 全球财经网 ...
- Vue 开发线路 资料 汇总
线路 作者推荐学习线路 https://zhuanlan.zhihu.com/p/23134551 他人建议 https://www.cnblogs.com/smartXiang/p/6051086. ...
- UFLDL教程笔记及练习答案三(Softmax回归与自我学习***)
:softmax回归 当p(y|x,theta)满足多项式分布,通过GLM对其进行建模就能得到htheta(x)关于theta的函数,将其称为softmax回归. 教程中已经给了cost及gradie ...
- async & await 的前世今生(Updated)----代码demo
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 随着ScrollView的滑动,渐渐的运行动画View
今天是实现了一个小功能的东西.看看效果图: 实现方式: 1.自己定义ScrollView 复写onScrollChange方法,来计算滑动的位置. 2.自己定义接口,通过接口来在ScrollVie ...
- struts2_13_OGNL表达式
全称:Object Graphic Navigation Language(对象图导航语言)是一个开源项目,是Struts2框架的默认表达式语言. 相对于EL表达式.它提供了平时我们须要的一些功能,如 ...
- C# 通过window消息控制指定控件的scroll滚动
[DllImport("User32.dll", CharSet = CharSet.Auto, SetLastError = true)] private st ...
- VMWare 14 Workstation Pro 下载与安装
1.双击安装运行 2.下一步 3.接受 下一步 4.自定义安装路径,下一步 5.下一步,取消勾选加入vmware客户体验 6.下一步 7.安装 8.安装中 9.完成 10.点击许可证安装 输入:FF3 ...
- EF(Linq)框架使用过程中的小技巧汇总 dbfunctions
这篇博客总结本人在实际项目中遇到的一些关于EF或者Linq的问题,作为以后复习的笔记或者供后来人参考(遇到问题便更新). 目录 技巧1: DbFunctions.TruncateTime()的使用 技 ...
- 【bzoj4554】[Tjoi2016&Heoi2016]游戏
现在问题有硬石头和软石头的限制 所以要对地图进行预处理 分行做,把有#隔开的*(x)形成联通块的存储下来. 分列作,把有#隔开的*(x)形成联通块的存储下来. 求出所有的行联通个数和列联通个数 作为二 ...