51nod 1239 欧拉函数之和【欧拉函数+杜教筛】
和bzoj 3944比较像,但是时间卡的更死
设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下:
\]
\]
\]
\]
然后递归求解即可。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const long long N=5000005,m=5000000,mod=1e9+7,inv2=500000004;
long long n,phi[N],q[N],tot,p[N];
bool v[N];
long long getp(long long x)
{
return (x<=m)?phi[x]:p[n/x];
}
void wk(long long x)
{//cout<<x<<endl;
if(x<=m)
return;
long long t=n/x;
if(v[t])
return;
v[t]=1;
long long w=x%mod;
p[t]=w*(w+1)%mod*inv2%mod;//cout<<x<<" "<<t<<endl;
for(long long i=2,la=1;la<x;i=la+1)
{
la=x/(x/i);
wk(x/i);
p[t]=(p[t]-getp(x/i)*(la-i+1)%mod)%mod;
}
}
int main()
{
phi[1]=1;
for(long long i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
phi[i]=i-1;
}
for(long long j=1;j<=tot&&i*q[j]<=m;j++)
{
long long k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
phi[k]=phi[i]*q[j];
break;
}
phi[k]=phi[i]*(q[j]-1);
}
}
for(long long i=2;i<=m;i++)
phi[i]=(phi[i]+phi[i-1])%mod;
scanf("%lld",&n);//cout<<n<<" "<<n%mod<<" "<<(n+1)%mod<<endl;
//g=(n%mod)*((n+1)%mod)%mod*inv2%mod;//cout<<g<<endl;
if(n<=m)
printf("%lld\n",phi[n]);
else
{
memset(v,0,sizeof(v));
wk(n);
printf("%lld\n",(p[1]%mod+mod)%mod);
}
return 0;
}
51nod 1239 欧拉函数之和【欧拉函数+杜教筛】的更多相关文章
- 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...
- 51Nod 1239 欧拉函数前n项和 杜教筛
http://www.51nod.com/Challenge/Problem.html#!#problemId=1239 AC代码 #include <bits/stdc++.h> #de ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- 51nod 1220 约数之和【莫比乌斯反演+杜教筛】
首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...
- luogu P3768 简单的数学题 杜教筛 + 欧拉反演 + 逆元
求 $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$ 考虑欧拉反演: $\sum_{d|n}\varphi(d)=n$ $\Rightarrow \sum_{i ...
- 51 NOD 1239 欧拉函数之和(杜教筛)
1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛
题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...
- 杜教筛--51nod1239 欧拉函数之和
求$\sum_{i=1}^{n}\varphi (i)$,$n\leqslant 1e10$. 这里先把杜教筛的一般套路贴一下: 要求$S(n)=\sum_{i=1}^{n}f(i)$,而现在有一数论 ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
随机推荐
- OC-Xcode中导入runtime框架,函数参数没有提示的处理方法
在了解runtime时,如果自己编写runtime代码,需要先导入头文件: #import <objc/message.h> 之后,例如了解runtime的消息机制时,调用objc_msg ...
- HDU 6390
GuGuFishtion Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- Ubuntu 16.04安装SQLite Browser操作SQLite数据库
安装: sudo apt-get install sqlitebrowser 启动:
- 删除,“windows setup 启用EMS”
方案1[笔者推荐]:进入Windows后按Windows+R输入msconfig回车进入系统配置,切换到引导,点击你要删除的选项然后点击删除就行[1].
- WebLogic中"域"的概念
WebLogic 版权声明:本文为博主原创文章,未经博主允许不得转载. WebLogic Server中的域是逻辑上相关的一组 WebLogic Server 资源,可以作为一个单元进行管理.一个域中 ...
- sys.argv的妙用:python命令行参数列表的修改、增加、删除
是否妙用取决于你怎么用 1.sys.argv是用来获取命令行参数的方法,本身是一个list.你搜其实用方法,这方面的介绍最多,这里不赘述 2.那么问题是:sys.argv可以赋值吗?可以扩充吗?可以修 ...
- centos 安装tkdiff
http://sourceforge.net/projects/tkdiff/files/tkdiff/4.2/ 下载tkdiff-4.2.tar.gz 然后在centos下解压 将tkdiff c ...
- C# 谁改了我的代码 使用 Resharper 快速做适配器
C# 谁改了我的代码 本文告诉大家一个特殊的做法,可以修改一个字符串常量 我们来写一个简单的程序,把一个常量字符串输出 private const string str = "linde ...
- 【知识梳理1】Android触摸事件机制
前言 随着科学技术的发展,智能手机早已成为我们当代人身边不可缺少的"伙伴"之中的一个,堪比对象女友.每天我们对着手机反复的做着点击.滑动操作,而手机则随着我们的操作给我们展示她的精 ...
- 基于开源项目的在线网络视频直播项目---pc端的推流
https://github.com/winlinvip/simple-rtmp-server/issues/66 https://github.com/justinmakaila/iOS-Frame ...