传送门

终于A了……细节真多……

首先我们发现这是个连乘,而且\(\phi\)是个积性函数,所以我们可以考虑不同的质因子以及它的不同次数的贡献。简单来说就是把每一次的\(\phi(lcm(i_1,i_2,...))\)拆成一堆\(\phi(p^c)\)的乘积

如果枚举到的\(k\)个数里质因子\(p\)的最大次数为\(c\),那么最终的答案就要乘上一个\(\phi(p^c)\)。所以我们的目的就是要求出这\(k\)个数里\(p\)的最大次数为\(c\)时的方案数\(t\),然后这部分对答案的贡献就是\(\phi(p^c)^t\)

计算方案的部分可以用容斥解决。设\(d_p(i)\)表示质因子\(p\)的最高次数为\(i\)的总方案数,\(s_p(i)\)表示质因子\(p\)的最高次数不超过\(i\)的总方案数,那么\(d_p(i)=s_p(i)-\sum_{j=1}^{i-1}d_p(j)\),边界条件为\(d_p(0)=s_p(0)\),前缀和优化一下就能快速计算了

最后是\(s_p(i)\)怎么计算。我们可以单独考虑每一位的方案数最后\(k\)位乘起来就好了。先考虑质因子\(p\)的最高次数刚好为\(i\)的情况,对于某一位来说,能选的数\(j\)要满足\(j\times p^i\leq n\)且\(j\)不包含\(p\)这个质因子,那么满足条件的\(j\)的次数就是\(\left\lfloor\frac{n}{p^i}\right\rfloor-\left\lfloor\frac{n}{p^{i+1}}\right\rfloor\),于是前缀和一下就能得到对一个数来说的方案数为\(n-\left\lfloor\frac{n}{p^i}\right\rfloor\),那么\(s_p(i)=(n-\left\lfloor\frac{n}{p^i}\right\rfloor)^k\)

然后注意一个细节,因为上面\(s_p\)和\(d_p\)的计算基本都是要炸精度所以要取模,然而因为这两个东西是作为次数出现的,所以根据欧拉定理取模的时候要模\(\phi(P)\)而不是\(P\),因为这个东西调死掉……

然后就没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=2e6+5,P=1e9+7,Phi=P-1;
int p[N],vis[N],phi[N],kkk[N];bool flag=0;
int n,k,m,ans;ll sum,t;
inline int add(R int x,R int y,R int P){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y,R int P){return x-y<0?x-y+P:x-y;}
inline int ksm(R int x,R int y,R int P){
int res=1;
for(;y;y>>=1,x=1ll*x*x%P)if(y&1)res=1ll*res*x%P;
return res;
}
void init(int n){
phi[1]=kkk[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,phi[i]=i-1,kkk[i]=ksm(i,k,Phi);
//预处理一下phi和所有数的k次幂
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1,kkk[i*p[j]]=1ll*kkk[i]*kkk[p[j]]%Phi;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
}
void solve(int p){
sum=kkk[n-n/p];
for(R int i=p;i<=n;(1ll*i*p<=n?i*=p:i=inf)){
t=dec(kkk[n-n/(1ll*i*p)],sum,Phi);
ans=1ll*ans*ksm(phi[i],t+Phi,P)%P,
sum=add(sum,t,Phi);
}
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&k),ans=1,init(n);if(n==1)return puts("1"),0;
fp(i,1,m)solve(p[i]);return printf("%d\n",ans),0;
}

P5106 dkw的lcm的更多相关文章

  1. [洛谷P5106]dkw的lcm:欧拉函数+容斥原理+扩展欧拉定理

    分析 考虑使用欧拉函数的计算公式化简原式,因为有: \[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... ...

  2. [Luogu5106]dkw的lcm

    https://minamoto.blog.luogu.org/solution-p5106 容易想到枚举质因子及其次数计算其贡献,容斥计算$\varphi(p^i)$的次方数. #include&l ...

  3. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  4. CodeBlocks及LCM应用

    以下是在开发过程中遇到的一些细节点: 1)called after throwing an instance of std::bad_alloc 此问题是由于publish(data),当中data赋 ...

  5. LCM 轻量级通信组件

    LCM和ZMQ比较 http://www.doc88.com/p-6711552253536.html 基于LCM和ZeroMQ的进程间通信研究 2.简介 LCM(Lightweight Commuc ...

  6. uva12546. LCM Pair Sum

    uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...

  7. UVA 10791 Minimum Sum LCM(分解质因数)

    最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...

  8. LCM在Kernel中的代码分析

    lcm的分析首先是mtkfb.c 1.mtk_init中platform_driver_register(&mtkfb_driver)注册平台驱动 panelmaster_init(); DB ...

  9. Pairs Forming LCM(素因子分解)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B    全题在文末. 题意:在a,b中(a,b<=n) ...

随机推荐

  1. [Bzoj2733][Hnoi2012] 永无乡(BST)(Pb_ds tree)

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4108  Solved: 2195[Submit][Statu ...

  2. Spring的@Autowired注解

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/annotation-based-configuration/spring-autowired-an ...

  3. 我在使用eclipse配置Tomcat服务器的时候发现,默认情况下Tocmat把我们部署的项目放在了workspaces下面,而不是像Myeclipse默认的那样放在tomcat的安装路径下。

    1.我在使用eclipse配置Tomcat服务器的时候发现,默认情况下Tocmat把我们部署的项目放在了workspaces下面,而不是像Myeclipse默认的那样放在tomcat的安装路径下. 2 ...

  4. [转]图解eclipse 查看原始类出现The jar file rt.jar has no source attachment

    原文:http://blog.csdn.net/u011514810/article/details/53196371 ---------------------------------------- ...

  5. 巧用Drawable 实现Android UI 元素间距效果

    源文地址: 巧用Drawable 实现Android UI 元素间距效果 在大部分的移动UI或者Web UI都是基于网格概念而设计的.这种网格一般都是有一些对其的方块组成,然后它们组合成为一个块.使用 ...

  6. Web开发从零单排之一:在新浪云平台SAE上开发一个html5电子喜帖

    需求描述: 本人大婚将至,女朋友说“现在都流行在微信上发电子请帖了,你不是技(cheng)术(xu)宅(yuan)嘛,不会连这个都搞不定吧” 本人嘴上说这等小事何足挂齿,但心里还是七上八下的,虽然自认 ...

  7. C#使用SharpZipLib压缩解压文件

    #region 加压解压方法 /// <summary> /// 功能:压缩文件(暂时只压缩文件夹下一级目录中的文件,文件夹及其子级被忽略) /// </summary> // ...

  8. Android第一个个人APP(帐号助手)

    第一个app上线了,关于帐号保存的一个app.本地保存,无须联网. 下载地址为:http://android.myapp.com/myapp/detail.htm?apkName=com.weeky. ...

  9. A + B Problem II(杭电1002)

    /*A + B Problem II Problem Description I have a very simple problem for you. Given two integers A an ...

  10. 【iOS系列】-单例模式的实现

    1:重写allocWithZone方法 allocWithZone方法是对象分配内存空间时, alloc方法最终会调用这个方法 + (id)allocWithZone:(struct _NSZone ...