题目链接:https://vjudge.net/problem/HDU-4292

Food

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6457    Accepted Submission(s): 2197

Problem Description
  You, a part-time dining service worker in your college’s dining hall, are now confused with a new problem: serve as many people as possible.
  The issue comes up as people in your college are more and more difficult to serve with meal: They eat only some certain kinds of food and drink, and with requirement unsatisfied, go away directly.
  You have prepared F (1 <= F <= 200) kinds of food and D (1 <= D <= 200) kinds of drink. Each kind of food or drink has certain amount, that is, how many people could this food or drink serve. Besides, You know there’re N (1 <= N <= 200) people and you too can tell people’s personal preference for food and drink.
  Back to your goal: to serve as many people as possible. So you must decide a plan where some people are served while requirements of the rest of them are unmet. You should notice that, when one’s requirement is unmet, he/she would just go away, refusing any service.
 
Input
  There are several test cases.
  For each test case, the first line contains three numbers: N,F,D, denoting the number of people, food, and drink.
  The second line contains F integers, the ith number of which denotes amount of representative food.
  The third line contains D integers, the ith number of which denotes amount of representative drink.
  Following is N line, each consisting of a string of length F. e jth character in the ith one of these lines denotes whether people i would accept food j. “Y” for yes and “N” for no.
  Following is N line, each consisting of a string of length D. e jth character in the ith one of these lines denotes whether people i would accept drink j. “Y” for yes and “N” for no.
  Please process until EOF (End Of File).
 
Output
  For each test case, please print a single line with one integer, the maximum number of people to be satisfied.
 
Sample Input
4 3 3
1 1 1
1 1 1
YYN
NYY
YNY
YNY
YNY
YYN
YYN
NNY
 
Sample Output
3
 
Source
 
Recommend
liuyiding

题解:

此题(POJ3281 Dining)的变形,只不过是把超级汇点连向食物的边改为库存,饮料连向超级汇点的边改为库存。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e3+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} char str[MAXN];
int main()
{
int N, F, D;
while(scanf("%d%d%d",&N,&F,&D)!=EOF)
{
int start = , end = F+D+*N+;
memset(maze, , sizeof(maze));
for(int i = ; i<=F; i++)
{
int Food_supply;
scanf("%d", &Food_supply);
maze[start][i] = Food_supply;
}
for(int i = ; i<=D; i++)
{
int Drink_supply;
scanf("%d", &Drink_supply);
maze[F+i][end] = Drink_supply;
}
for(int i = ; i<=N; i++)
{
scanf("%s", str+);
for(int j = ; j<=F; j++)
if(str[j]=='Y')
maze[j][F+D+i] = ;
}
for(int i = ; i<=N; i++)
{
scanf("%s", str+);
for(int j = ; j<=D; j++)
if(str[j]=='Y')
maze[F+D+N+i][F+j] = ;
}
for(int i = ; i<=N; i++)
maze[F+D+i][F+D+N+i] = ; cout<< sap(start, end, F+D+*N+) <<endl;
}
}

HDU4292 Food —— 最大流 + 拆点的更多相关文章

  1. poj 3498 March of the Penguins(最大流+拆点)

    题目大意:在南极生活着一些企鹅,这些企鹅站在一些冰块上,现在要让这些企鹅都跳到同一个冰块上.但是企鹅有最大的跳跃距离,每只企鹅从冰块上跳走时会给冰块造成损害,因此企鹅跳离每个冰块都有次数限制.找出企鹅 ...

  2. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  3. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  4. BZOJ-1877 晨跑 最小费用最大流+拆点

    其实我是不想做这种水题的QWQ,没办法,剧情需要 1877: [SDOI2009]晨跑 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 1704 Solve ...

  5. BZOJ-1070 修车 最小费用最大流+拆点+略坑建图

    1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3624 Solved: 1452 [Submit][Status] ...

  6. hdu 4289 最大流拆点

    大致题意:     给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中的每个点,去掉这个点都需要一定的花费.求至少多少花费才能使得s和t之间不连通. 大致思路:     最基础的拆点最大 ...

  7. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  8. UVA-11613 Acme Corporation (最大费用最大流+拆点)

    题目大意:有一种商品X,其每每单位存放一个月的代价I固定.并且已知其每月的最大生产量.生产每单位的的代价.最大销售量和销售单价,还已知每个月生产的X能最多能存放的时间(以月为单位).问只考虑前m个月, ...

  9. P2891 [USACO07OPEN]吃饭Dining(最大流+拆点)

    题目描述 Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she w ...

随机推荐

  1. Moya 与 RxSwift 使用

    如在OC中使用AFNetworking一般,Swift我们用Alamofire来做网络库.而Moya在Alamofire的基础上又封装了一层: 1.关于moya moya 官方说moya有以下特性-_ ...

  2. 区间翻转(codevs 3243)

    题目描述 Description 给出N个数,要求做M次区间翻转(如1 2 3 4变成4 3 2 1),求出最后的序列 输入描述 Input Description 第一行一个数N,下一行N个数表示原 ...

  3. Codeforces891C. Envy

    $n \leq 5e5$,$m \leq 5e5$的无向边权图,$q \leq 5e5$个询问,每次问一系列边是否能同时存在于某棵最小生成树上. 一条边在最小生成树上,当比他小的边都加入后,加入他会使 ...

  4. tensorflow加载embedding模型进行可视化

    1.功能 采用python的gensim模块训练的word2vec模型,然后采用tensorflow读取模型可视化embedding向量 ps:采用C++版本训练的w2v模型,python的gensi ...

  5. msp430项目编程57

    msp430综合项目---扩展项目七57 1.电路工作原理 2.代码(显示部分) 3.代码(功能实现) 4.项目总结

  6. 使用MYSQL命令直接导入导出SQL文件(转)

    参考:http://blog.csdn.net/jiary5201314/article/details/52026816 1.MYSQL中将数据库导出成SQL文件 其实很简单的,就是一条语句就可以了 ...

  7. T3139 栈练习3 codevs

    http://codevs.cn/problem/3139/ 题目描述 Description 比起第一题,本题加了另外一个操作,访问栈顶元素(编号3,保证访问栈顶元素时或出栈时栈不为空),现在给出这 ...

  8. AbstractQueuedSynchronizer 队列同步器源码分析

    AbstractQueuedSynchronizer 队列同步器(AQS) 队列同步器 (AQS), 是用来构建锁或其他同步组件的基础框架,它通过使用 int 变量表示同步状态,通过内置的 FIFO ...

  9. Centos常用命名

    1.关机 (系统的关机.重启以及登出 ) 的命令 shutdown -h now 关闭系统(1) init 0 关闭系统(2) telinit 0 关闭系统(3) shutdown -h hours: ...

  10. Thrift --- 支持双向通信

    [问题] Thrift采用了C/S模型,不支持双向通信:client只能远程调用server端的RPC接口,但client端则没有RPC供server端调用,这意味着,client端能够主动与serv ...