洛谷P1251 餐巾计划问题(最小费用最大流)
题意
一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径
1、以$p$的费用买
2、以$f$的费用送到快洗部,并在$m$天后取出
3、以$s$的费用送到慢洗部,并在$n$天后取出
问满足要求时的最小费用
Sol
一道非常不错的网络流,应该不难看出是费用流。
首先进行拆点,把每个点早上和晚上,然后进行连边
从$S$向i连边$(0, r_i)$,表示到了晚上有$r_i$块脏餐巾
从$i'$向$T$连边$(0, r_i)$,表示早上有$r_i$块新餐巾
从$S$向$i'$连边$(p, INF)$,表示每天早上可以以$p$的费用无限提供餐巾
从$i$向$i'$连边$(0, INF)$,表示每天晚上的脏餐巾可以留到第二天晚上
从$i$向$i' + m$连边$(f, INF)$,表示快洗
从$i$向$i' + n$连边$(s, INF)$,表示慢洗
这样既可以保证每天的$r_i$满足要求,又能保证最小费用。so nice
#include<cstdio>
#include<cstring>
#include<queue>
#define LL long long
using namespace std;
const int MAXN = 1e5 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, S, T;
int r[MAXN], p, m, f, n, s;
struct Edge {
int u, v, w, f, nxt;
}E[MAXN];
int head[MAXN], num;
inline void add_edge(int x, int y, int w, int f) {
E[num] = (Edge){x, y, w, f, head[x]};
head[x] = num++;
}
inline void AddEdge(int x, int y, int w, int f) {
add_edge(x, y, w, f);
add_edge(y, x, -w, );
}
int dis[MAXN], vis[MAXN], Pre[MAXN];
bool SPFA() {
memset(dis, 0x3f, sizeof(dis));
memset(vis, , sizeof(vis));
queue<int> q; dis[S] = ; q.push(S);
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = ;
for(int i = head[p]; i != -; i = E[i].nxt) {
int to = E[i].v;
if(dis[to] > dis[p] + E[i].w && E[i].f) {
dis[to] = dis[p] + E[i].w;
Pre[to] = i;
if(!vis[to]) vis[to] = , q.push(to);
}
}
}
return dis[T] <= INF;
}
LL F() {
LL nowflow = INF;
for(int i = T; i != S; i = E[Pre[i]].u) nowflow = min(nowflow, (LL)E[Pre[i]].f);
for(int i = T; i != S; i = E[Pre[i]].u) E[Pre[i]].f -= nowflow, E[Pre[i] ^ ].f += nowflow;
return nowflow * dis[T];
}
LL MCMF() {
LL ans = ;
while(SPFA())
ans += F();
return ans;
}
int main() {
memset(head, -, sizeof(head));
N = read();
S = ; T = * N + ;
for(int i = ; i <= N; i++) r[i] = read();
p = read(); m = read(); f = read(); n = read(); s = read();
for(int i = ; i <= N; i++) AddEdge(S, i, , r[i]);
for(int i = ; i <= N; i++) AddEdge(S, i + N, p, INF);
for(int i = ; i <= N; i++) AddEdge(i + N, T, , r[i]);
for(int i = ; i <= N; i++) {
if(i + m <= N) AddEdge(i, i + N + m, f, INF);
if(i + n <= N) AddEdge(i, i + N + n, s, INF);
if(i + <= N) AddEdge(i, i + , , INF);
}
printf("%lld", MCMF());
}
洛谷P1251 餐巾计划问题(最小费用最大流)的更多相关文章
- 洛谷P1251 餐巾计划问题(费用流)
传送门 不得不说这题真是思路清奇,真是网络流的一道好题,完全没想到网络流的建图还可以这么建 我们把每一个点拆成两个点,分别表示白天和晚上,白天可以得到干净的餐巾(购买的,慢洗的,快洗的),晚上可以得到 ...
- 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】
(题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...
- 洛谷 P1251 餐巾计划问题
题目链接 最小费用最大流. 每天拆成两个点,早上和晚上: 晚上可以获得\(r_i\)条脏毛巾,从源点连一条容量为\(r_i\),费用为0的边. 早上要供应\(r_i\)条毛巾,连向汇点一条容量为\(r ...
- 洛谷P3381 - 【模板】最小费用最大流
原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...
- 洛谷 P2053 [SCOI2007]修车(最小费用最大流)
题解 最小费用最大流 n和m是反着的 首先, \[ ans = \sum{cost[i][j]}*k \] 其中,\(k\)为它在当前技术人员那里,排倒数第\(k\)个修 我们可以对于每个技术人员进行 ...
- 洛谷 P3381【模板】最小费用最大流
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表 ...
- 洛谷 P3381 【模板】最小费用最大流
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数\(N.M.S.T\) ...
- 洛谷P3381 【模板】最小费用最大流(dijstra费用流)
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表 ...
- 洛谷 P1251 餐巾计划问题【最小费用最大流】
建图细节比较多,对于每个点i,拆成i和i',i表示用的餐巾,i'表示脏餐巾,连接: (s,i,r[i],p)表示在这一天买新餐巾 (i,t,r[i],0)表示这一天用了r[i]的餐巾 (s,i+n,r ...
随机推荐
- 阿里云短信服务发送短信验证码(JAVA开发此功能)
开发此功能需注册阿里云账号,并开通短信服务(免费开通) 充值后,不会影响业务的正常使用!(因为发送验证类短信:1-10万范围的短信是0.045元/条).开发测试使用,充2块钱测试足够了 可参考阿里云官 ...
- MongoDB C++ gridfs worked example
使用libmongoc,参考:http://mongoc.org/libmongoc/current/mongoc_gridfs_t.html #include <mongoc.h> #i ...
- windows server2012之部署HTTPS安全站点
现在的互联网越来越重视网络安全方面的内容,像我们日常生活中浏览的网上银行网站等涉及安全的你都会发现有https 的标志出现,在URL前加https://前缀表明是用SSL加密的. 你的电脑与服务器之间 ...
- 使用SVPullToRefresh实现下拉刷新和下拉加载
移动端开发中,“下拉刷新”和“上拉加载更多”早已在各大App中随处可见.也非常容易就能找到直接可供使用的第三方资源.譬如EGOTableViewPullRefresh(下拉刷新)和LoadMoreTa ...
- [USACO2007 Demo] Cow Acrobats
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1629 [算法] 贪心 考虑两头相邻的牛 , 它们的高度值和力量值分别为ax , ay ...
- 微信小程序开发之https从无到有
本篇不讲什么是https,什么是SSL,什么是nginx 想了解这些的请绕道,相信有很多优秀的文章会告诉你. 本篇要讲的在最短的时间内,让你的网站从http升级到https. 开始教程前再说一句:ht ...
- nodejs开发游戏服务器遇到的性能问题
问题描述: 使用nodejs开发了一个游戏服务器,为了尽可能提高服务器的性能,服务器采用多进程的架构,前面处理玩家socket连接的是多个nodejs进程,使用 child_process 模块,服务 ...
- 【转】Darwin Streaming Server 核心代码分析
无意中看到了dqzhangp的一篇博客,分析了DSS的核心架构,读完顿时感觉豁然开朗,茅塞顿开,写得非常的鞭辟入里,言简意赅,我想没有相当的功力是写不出这样的文章的,情不自禁转到自己空间来,生怕弄丢了 ...
- 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时8&&9
课时8 反向传播与神经网络初步(上) 反向传播在运算连路中,这是一种通过链式法则来进行递推的计算过程,这个链路中的每一个中间变量都会对最终的损失函数产生影响. 链式法则通常包含两部分,局部梯度和后一层 ...
- D3.js 线段生成器 (V3版本)
线段生成器 与线段生成器相关的方法: d3.svg.line() //创建一个线段生成器. line(data) //使用线段生成器绘制data数据. line.x([x]) //设置或获取线 ...