bzoj1063【Noi2008】道路设计
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1063
用一种划分方式将树划为重链和轻链,使得所有点到根节点的路径经过的轻链最大值最小
sol: 先判定图是否联通,若不连通输出-1
考虑树形dp,f[i][j]表示以i为根的字树中到i的最大不便利值为j的方案数
然而这时空都是O(n^2)的QAQ,而且没法转移
考虑运用树链剖分的思想可证明,j之多为O(log2(n))的
事实上,j在图为完全二叉树时取最大值O(log3(n))
对于转移,f[i][j][k]表示以i为根值为j,i向儿子连了k条边的方案数
则对于每个节点u,可以选择向(f1)或不向(f2)其某个儿子v连边
则f1=f[v][j-1][0]+f[v][j-1][1]+f[v][j-1][2] (不向儿子连边)
f2=f[v][j][0]+f[v][j][1] (向儿子连边)
对于某个点,在遍历到他的一个儿子时,之前儿子的影响已经被累加进答案f[u][j][]
考虑新加进来的点的影响(为避免后效性应按2-1-0的顺序计算):
f[u][j][2]=f[u][j][2]*f1+f[u][j][1]*f2
f[u][j][1]=f[u][j][1]*f1+f[u][j][0]*f2
f[u][j][0]=f[u][j][0]*f1
最后从小到大扫一遍j,如果有,输出即可,注意%Q等于0的情况(设为Q)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int Mx=;
int n,m,Q,tot,head[Mx],ver[Mx],next[Mx];
long long ans,f[Mx][][];
inline long long jud(long long tmp)//处理%Q=0的情况
{
if(tmp!=&&tmp%Q==) return Q;
else return tmp%Q;
}
inline void add(int x,int y)
{
tot++;
next[tot]=head[x];
ver[tot]=y;
head[x]=tot;
}
void dfs(int x,int fa)
{
int cnt=;//cnt记录儿子个数
for(int i=head[x];i;i=next[i])
if(ver[i]!=fa)
dfs(ver[i],x),cnt++;
for(int j=;j<=;j++) f[x][j][]=;//f数组赋初值
if(cnt==) return ;//叶子节点
for(int i=head[x];i;i=next[i])//树形dp
if(ver[i]!=fa)
{
int y=ver[i];
for(int j=;j<=;j++)
{
long long f1,f2;
f1=f[y][j-][]+f[y][j-][]+f[y][j-][];
f2=f[y][j][]+f[y][j][];
f[x][j][]=jud((long long) f[x][j][]*f1+(long long) f[x][j][]*f2);
f[x][j][]=jud((long long) f[x][j][]*f1+(long long) f[x][j][]*f2);
f[x][j][]=jud((long long) f[x][j][]*f1);
}
} }
int main()
{
scanf("%d%d%d",&n,&m,&Q);
for(int i=;i<=m;i++)
{
int x,y;scanf("%d%d",&x,&y);
add(x,y); add(y,x);
}
if(m<n-) { puts("-1\n-1"); return ; }
dfs(,);
for(int j=;j<=;j++)
{
ans=f[][j][]+f[][j][]+f[][j][];
if(ans!=)
{
cout<<j<<endl<<(ans%Q)<<endl;
return ;
}
}
return ;
}
bzoj1063【Noi2008】道路设计的更多相关文章
- [bzoj1063][Noi2008]道路设计
来自FallDream的博客,未经允许,请勿转载,谢谢. Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段.Z国共有n座城市,一些城市之间由双向的公路所连接.非常神奇的是 ...
- BZOJ1063 NOI2008 道路设计 树形DP
题目传送门: BZOJ 题意精简版:给出一棵树,在一种方案中可以将树的若干链上的所有边的边权改为$0$,但需要保证任意两条链之间没有交点.问最少的一种方案,使得从根节点到其他节点经过的边的边权和的最大 ...
- 1063: [Noi2008]道路设计 - BZOJ
Description Z 国坐落于遥远而又神奇的东方半岛上,在小Z 的统治时代公路成为这里主要的交通手段.Z 国共有n 座城市,一些城市之间由双向的公路所连接.非常神奇的是Z 国的每个城市所处的经度 ...
- [NOI2008] 道路设计
link 思维题目,题目描述其实说的就是这是一个树,想到树形$dp$.若两个铁路不向交,则每个点的度都$\leq 2$.所以现在就可以搞dp了. 怎么去维护答案,容易想到设$dp(i,j,k)$为现在 ...
- 并不对劲的[Noi2008]道路设计
Time Limit: 20 Sec Memory Limit: 162 MB Submit: 931 Solved: 509 [Submit][Status][Discuss] Descriptio ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- dp专练
dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...
- 【BZOJ1063】【NOI2008】道路设计(动态规划)
[BZOJ1063][NOI2008]道路设计(动态规划) 题面 BZOJ 题解 发现每个点最多只能被修一次等价于每个点最多只能和两条铁路相邻 考虑一个\(dp\) 设\(f[i][0/1/2]\)表 ...
- 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计
@ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...
随机推荐
- mac下相关操作命令
查看端口使用情况 lsof -i tcp:
- Spring中的事务传播行为与隔离级别
事务传播行为 事务传播行为(为了解决业务层方法之间互相调用的事务问题): 当事务方法被另一个事务方法调用时,必须指定事务应该如何传播.例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己 ...
- tcpdump简单使用
1.使用wincap将文件放入系统任意路径, 2.进入系统,赋文件可执行权限, 3.输入命令:./tcpdump -i eth0 -s 0 -w xxx.pcap 4.进行数据交互 5.退出程序运行, ...
- go语音实战读后感——一
1.第一个go程序: package main import ( "fmt" ) func main() { fmt.Println("Hello go") } ...
- zust_第二周——瞎扯系列
首先来原题列表: A:Gridland http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1037 B:HangOver htt ...
- 国庆集训 || Wannafly Day4
链接:https://www.nowcoder.com/acm/contest/205#question 一场题面非常 有趣 但是题目非常 不友好的比赛 QAQ L.数论之神 思维(?) 题意:求 ...
- python Object-Oriented Programming
Python 类的成员.成员修饰符.类的特殊成员. Python 类的成员 类的成员可以分为三大类: 字段.方法和属性. #注:所有成员中,只有普通字段的内容保存对象中,即: #根据此类创建了多少对象 ...
- python之文件读写操作(r/r+/rb/w/w+/wb/a/a+/ab)的作用
'r':只读.该文件必须已存在. 'r+':可读可写.该文件必须已存在,写为追加在文件内容末尾. 'rb':表示以二进制方式读取文件.该文件必须已存在. 'w':只写.打开即默认创建一个新文件,如果文 ...
- 更改ubuntu的官方镜像源
我们自己安装的ubuntu通常默认镜像源是官方的,并不好用,因为网速以及限制比较多,所以为了使用方便,通常都会去更改一下默认的镜像源配置. 这里我们使用清华大学开源镜像软件站,https://mirr ...
- (7)zabbix资产清单inventory管理
概述 监控的设备越来越多,有时候搞不清楚哪台服务器是什么配置,大多公司有自己的资产清单,要去专门的系统查询显得多少有点麻烦.为此,zabbix专门设置了设备资产管理功能. 我们创建或编辑主机的时候,可 ...