BZOJ3130 [Sdoi2013]费用流 【网络流 + 二分】
题目
Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。
最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。
上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。 对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。
输入格式
第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。
输出格式
第一行一个整数,表示最大流的值。
第二行一个实数,表示总费用。建议选手输出四位以上小数。
输入样例
3 2 1
1 2 10
2 3 15
输出样例
10
10.0000
提示
【样例说明】
对于Alice,最大流的方案是固定的。两条边的实际流量都为10。
对于Bob,给第一条边分配0.5的费用,第二条边分配0.5的费用。总费用
为:100.5+100.5=10。可以证明不存在总费用更大的分配方案。
【数据规模和约定】
对于20%的测试数据:所有有向边的最大流量都是1。
对于100%的测试数据:N < = 100,M < = 1000。
对于l00%的测试数据:所有点的编号在I..N范围内。1 < = 每条边的最大流
量 < = 50000。1 < = P < = 10。给定运输网络中不会有起点和终点相同的边。
题解
首先,Bob的最优策略一定是将所有权值加到流量最大的边上
所以Alice应使在最大流前提下使最大流量的边最小
那么二分所有边的上限判定可行性就可以了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define eps 1e-8
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 105,maxm = 5005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,h[maxn],ne = 2,S,T;
double P,M;
struct EDGE{int to,nxt; double f,cap;}ed[maxm];
inline void build(int u,int v,double w){
ed[ne] = (EDGE){v,h[u],w,w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0,0}; h[v] = ne++;
}
int d[maxn],vis[maxn],cur[maxn];
queue<int> q;
bool bfs(){
for (int i = 1; i <= n; i++) d[i] = INF,vis[i] = false;
q.push(S); d[S] = 0; vis[S] = true;
int u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (fabs(ed[k].f) > eps && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true;
q.push(to);
}
}
return vis[T];
}
double dfs(int u,double minf){
if (u == T || fabs(minf) < eps) return minf;
double flow,f; int to;
if (cur[u] == -1) cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && fabs(f = dfs(to,min(minf,ed[k].f))) > eps){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (fabs(minf) < eps) break;
}
return flow;
}
double maxflow(){
double flow = 0;
while (bfs()){
memset(cur,-1,sizeof(cur));
flow += dfs(S,INF);
}
return flow;
}
bool check(double cap){
for (int i = 2; i < ne; i += 2){
ed[i ^ 1].f = 0;
ed[i].f = min(ed[i].cap,cap);
}
return maxflow() >= M;
}
void solve(){
M = maxflow();
double l = 0,r = 50000,mid;
while ((r - l) > 1e-4){
mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
printf("%.lf\n%.4lf\n",M,l * P);
}
int main(){
n = read(); m = read(); P = read(); S = 1; T = n;
int a,b,w;
for (int i = 1; i <= m; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
solve();
return 0;
}
BZOJ3130 [Sdoi2013]费用流 【网络流 + 二分】的更多相关文章
- BZOJ 3130: [Sdoi2013]费用流 网络流+二分
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1230 Solved: ...
- BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流
https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...
- BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 960 Solved: 5 ...
- bzoj千题计划133:bzoj3130: [Sdoi2013]费用流
http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...
- BZOJ3130: [Sdoi2013]费用流(二分,最大流)
Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...
- 【二分答案】【最大流】bzoj3130 [Sdoi2013]费用流
二分最大的边的cap,记作Lim. 把所有的边的cap设为min(Lim,cap[i]). Bob一定会把单位费用加到最大边上. #include<cstdio> #include< ...
- BZOJ3130 [Sdoi2013]费用流
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=3130 这题codevs上也有,不过数据挂了[要A得看discuss]. 题目大意: Ali ...
- bzoj 3130 [Sdoi2013]费用流(二分,最大流)
Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...
- BZOJ 3130 [Sdoi2013]费用流 ——网络流
[题目分析] 很容易想到,可以把P放在流量最大的边上的时候最优. 所以二分网络流,判断什么时候可以达到最大流. 流量不一定是整数,所以需要实数二分,整数是会WA的. [代码] #include < ...
随机推荐
- IOS生成UUID
/** * 生成GUID */ + (NSString *)generateUuidString{ // create a new UUID which you own CFUUIDRef uuid ...
- 关于svn提交的时候强制写注释
本文固定链接: http://www.linuxyan.com/linux-service/229.html 转载请注明: admin 2012年09月29日 于 ㄨ销声匿迹.Linux 发表 在sv ...
- Python 学习日志9月19日
9月19日 周二 今天是普通的一天,昨天也是普通的一天,刚才我差点忘记写日志,突然想起来有个事情没做,回来写. 今天早晨学习<Head First HTML and CSS>第十一章节“布 ...
- windows中安装模拟器后修改模拟器中的hosts方法
1.背景 有的时候我们测试安卓的app需要绑定hosts,这个时候我们如果只是修改PC机器上的hosts,然而在模拟器中并不生效.这个时候我们就需要修改模拟器中的hosts. 模拟器中的hosts为只 ...
- 移动端:active伪类无效的解决方法
:active伪类常用于设定点击状态下或其他被激活状态下一个链接的样式.最常用于锚点<a href="#">这种情况,一般主流浏览器下也支持其他元素,如button等. ...
- 如何 Scale Up/Down Deployment?【转】
伸缩(Scale Up/Down)是指在线增加或减少 Pod 的副本数.Deployment nginx-deployment 初始是两个副本. k8s-node1 和 k8s-node2 上各跑了一 ...
- base64类
public class Base64{ /** * how we separate lines, e.g. \n, \r\n, \r etc. */ private String lineSepar ...
- Java语言的特点和特性
1. Java语言的主要特点: 1. 跨平台性 所谓的跨平台性,是指软件可以不受计算机硬件和操作系统的约束而在任意计算机环境下正常运行.这是软件发展的趋势和编程人员追求的目标.之所以这样说,是因为计算 ...
- Ubuntu sudo 出现 is not in the sudoers file解决方案
前言: 自己想额外创建一个Linux账户,但是发现新创建的用户(lgq)并不能使用sudo指令. 但是在安装系统时创建的用户(abc)是可以正常使用的. 原因是新创建的用户并没有被赋予使用sudo指令 ...
- tkinter学习-选择按钮
阅读目录 Checkbutton Radiobutton LabelFrame checkbutton : 说明:多选框控件,用于在程序中提供多项选择框,但是处理“多选一”的问题,还是交给 Radio ...