OpenCV2马拉松第13圈——模版匹配
Adaptive Mean-SHIFT)是一种著名的算法。但在这里。我们先不讨论camshift,而是先讨论最简单的模版匹配。
- 模版匹配算法
- opencv normalize函数
- opencv matchTemplate函数
- opencv minMaxLoc函数
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
- 遍历图像的全部点
- 对于一个点(m,n),计算square error.也就是遍历模版图像的长和高,计算sum( (src(m+x,n+y)-template(x,y))^2 )
- 遍历完后,就有了一个和原图大小相等的square error(不考虑边缘)矩阵,然后取出值最小的那个位置
-
C++: void matchTemplate(InputArray image,
InputArray templ, OutputArray result, int method)
-
- image – 输入图像
- templ – 模版图像,不能比输入图像大,类型要和输入图像一致
- result – 输出的结果,单通道32位浮点数.result图像比输入图像要小,由于考虑了边界.If image is
and templ is
,
thenresult is.
- method – 有6种方法
method=CV_TM_SQDIFF
method=CV_TM_SQDIFF_NORMED
method=CV_TM_CCORR
method=CV_TM_CCORR_NORMED
method=CV_TM_CCOEFF
where
method=CV_TM_CCOEFF_NORMED
NOTE:之前我们用square error时,值越小说明越匹配,可是并非上面全部的方法都是这样子.
used)
used)
假设我们想看效果。就必需要做归一化了.
OutputArray dst, double alpha=1,
double beta=0, int norm_type=NORM_L2,
int dtype=-1, InputArraymask=noArray() )
L2_norm: 每個元素乘上1/sqrt(1+16+25+36+49+100)
NORM_MINMAX:使每個元素限制在[a=5,b=0]之間算法例如以下:dst(i)=(src(i)-min(src))*(5-0)/(max(src)-min(src))
1-->0
4-->3*5/9=1.6666
5-->4*5/9=2.2222
double minVal; double maxVal; Point minLoc; Point maxLoc; minMaxLoc( image, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
the function calls as arguments:
- image: 输入图像
- &minVal and &maxVal: Variables to save the minimum and maximum values in result
- &minLoc and &maxLoc: The Point locations of the minimum and maximum values in the array.
- Mat(): Optional mask
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h> using namespace std;
using namespace cv; Mat img; Mat templ; Mat result;
const char* image_window = "Source Image";
const char* result_window = "Result window"; int match_method;
int max_Trackbar = 5; void MatchingMethod( int, void* ); int main( int, char** argv )
{
/// Load image and template
img = imread( argv[1], 1 );
templ = imread( argv[2], 1 ); /// Create windows
namedWindow( image_window, CV_WINDOW_AUTOSIZE );
namedWindow( result_window, CV_WINDOW_AUTOSIZE ); /// Create Trackbar
const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); MatchingMethod( 0, 0 ); waitKey(0);
return 0;
} void MatchingMethod( int, void* )
{
Mat img_display;
img.copyTo( img_display ); //重要。调用模版匹配再进行归一化
matchTemplate( img, templ, result, match_method );
normalize( result, result, 0, 1, NORM_MINMAX); double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;
//找到最大最小点
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); //依据我前面讲的。分方法取最大还是最小值
if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
{ matchLoc = minLoc; }
else
{ matchLoc = maxLoc; } //画上矩形框框
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); imshow( image_window, img_display );
imshow( result_window, result ); return;
}
OpenCV2马拉松第13圈——模版匹配的更多相关文章
- OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)
收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检 ...
- OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...
- OpenCV2马拉松第10圈——直方图反向投影(back project)
收入囊中 灰度图像的反向投影 彩色图像的反向投影 利用反向投影做object detect 葵花宝典 什么是反向投影?事实上没有那么高大上! 在上一篇博文学到,图像能够获得自己的灰度直方图. 反向投影 ...
- OpenCV2马拉松第22圈——Hough变换直线检測原理与实现
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/27220445 收入囊中 Hough变换 概率Ho ...
- OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)
收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...
- OpenCV2马拉松第2圈——读写图片
收入囊中 用imread读取图片 用nameWindow和imshow展示图片 cvtColor彩色图像灰度化 imwrite写图像 Luv色彩空间转换 初识API 图像读取接口 image = im ...
- OpenCV2马拉松第12圈——直方图比較
收入囊中 使用4种不同的方法进行直方图比較 葵花宝典 要比較两个直方图, 首先必需要选择一个衡量直方图相似度的对照标准.也就是先说明要在哪个方面做对照. 我们能够想出非常多办法,OpenCV採用了下面 ...
- openCV2马拉松第19圈——Harris角点检測(自己实现)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...
- OpenCV2马拉松第5圈——线性滤波
收入囊中 这里的非常多内容事实上在我的Computer Vision: Algorithms and ApplicationsのImage processing中都有讲过 相关和卷积工作原理 边界处理 ...
随机推荐
- linux系统日志中出现大量systemd Starting Session ### of user root 解决
这种情况是正常的,不算是一个问题 https://access.redhat.com/solutions/1564823 Environment Red Hat Enterprise Linux 7 ...
- 洛谷 P3387 【模板】缩点 DAGdp学习记
我们以洛谷P3387 [模板]缩点 来学习DAGdp 1.这道题的流程 //伪代码 for i->n if(i未被遍历) tarjan(i) 缩点() DAGdp() 完成 首先tarjan这部 ...
- 【Codeforces 25C】Roads in Berland
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 用floyd思想. 求出来这条新加的边影响到的点对即可. 然后尝试更新点对之间的最短路就好. 更新之后把差值从答案里面减掉. [代码] #in ...
- xtu summer individual-4 B - Party All the Time
Party All the Time Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. Orig ...
- 【Ts 2】Nginx服务器搭建
在项目中,首先是需要Nginx服务器作为一个图片服务器来使用.那么,久涉及到服务器的搭建.这次服务器的搭建,主要是在三个环境上进行了学习:CentOS6.2,CentOS7,和Ubuntu16.那么本 ...
- Codeforces Round #277 (Div. 2 Only)
A:SwapSort http://codeforces.com/problemset/problem/489/A 题目大意:将一个序列排序,可以交换任意两个数字,但要求交换的次数不超过n,输出任意一 ...
- [转]maven编译时出现读取XXX时出错invalid LOC header (bad signature)
maven编译时出现读取XXX时出错invalid LOC header (bad signature) 一.发现问题右击pom.xml,run as —> maven install,会看到c ...
- 【BZOJ1008】越狱(排列组合计数,容斥原理)
题意: 思路: #include<cstdio> #include<cstdlib> #include<iostream> #include<algorith ...
- SystemInformationRequestHandlers
SystemInformationRequestHandlers - Solr Wiki Search: Solr Wiki Login SystemInformationRequestHandler ...
- Pycharm工具配置记录
安装Pycharm工具后,常用配置方法记录: 1:开启“设置”快捷按钮 2:进入设置后,选择或添加python解释器 当然,python解释器需要提前安装好. 3:在设置里,配置默认模板 4 :自动更 ...