题目链接  BZOJ4034

这道题树链剖分其实就可以了。

单点更新没问题。

相当于更新

[f[x], f[x]]这个区间。

f[x]表示树链剖分之后每个点的新的标号。

区间更新的话类似DFS序,求出所对应的区间。

也就是[f[x], f[x] + size[x] - 1]。

给这个区间加上a即可。

询问的时候有两种方法,一个是直接套模板。

还有一种方法是,因为是查询x到1的权值和,

所以跟着top[x]走就可以了。

第一种方法:

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)    for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define lson i << 1, L, mid
#define rson i << 1 | 1, mid + 1, R typedef long long LL; const int N = 300010; LL a[N], sum[N << 2], lazy[N << 2], y;
int f[N], fp[N], son[N], deep[N], father[N], sz[N], top[N];
int x, tot, n, m, op;
vector <int> v[N]; void dfs1(int x, int fa, int dep){
deep[x] = dep;
father[x] = fa;
son[x] = 0;
sz[x] = 1;
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == fa) continue;
dfs1(u, x, dep + 1);
sz[x] += sz[u];
if (sz[son[x]] < sz[u]) son[x] = u;
}
} void dfs2(int x, int tp){
top[x] = tp;
f[x] = ++tot;
fp[f[x]] = x;
if (son[x]) dfs2(son[x], tp);
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == father[x] || u == son[x]) continue;
dfs2(u, u);
}
} inline void pushup(int i){
sum[i] = sum[i << 1] + sum[i << 1 | 1];
} inline void pushdown(int i, int L, int R){
int mid = (L + R) >> 1;
lazy[i << 1] += lazy[i];
sum[i << 1] += lazy[i] * (mid - L + 1);
lazy[i << 1 | 1] += lazy[i];
sum[i << 1 | 1] += lazy[i] * (R - mid);
lazy[i] = 0;
} void build(int i, int L, int R){
if (L == R){ sum[i] = a[fp[L]]; return; }
int mid = (L + R) >> 1;
build(lson);
build(rson);
pushup(i);
} void update(int i, int L, int R, int l, int r, LL val){
if (l == L && R == r){
sum[i] += val * (R - L + 1);
lazy[i] += val;
return ;
} if (lazy[i]) pushdown(i, L, R); int mid = (L + R) >> 1;
if (r <= mid) update(lson, l, r, val);
else if (l > mid) update(rson, l, r, val);
else{
update(lson, l, mid, val);
update(rson, mid + 1, r, val);
} pushup(i);
} LL query_sum(int i, int L, int R, int l, int r){
pushdown(i, L, R);
if (L == l && R == r) return sum[i];
int mid = (L + R) >> 1;
if (r <= mid) return query_sum(lson, l, r);
else if (l > mid) return query_sum(rson, l, r);
else return query_sum(lson, l, mid) + query_sum(rson, mid + 1, r);
} LL find_sum(int x, int y){
int f1 = top[x], f2 = top[y];
LL ret = 0;
for (; f1 != f2; ){
if (deep[f1] < deep[f2]) swap(f1, f2), swap(x, y);
ret += query_sum(1, 1, n, f[f1], f[x]);
x = father[f1], f1 = top[x];
} if (x == y) return ret + query_sum(1, 1, n, f[x], f[y]);
if (deep[x] > deep[y]) swap(x, y);
return ret + query_sum(1, 1, n, f[x], f[y]);
} int main(){ scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%lld", a + i);
rep(i, 2, n){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
} dfs1(1, 0, 0);
dfs2(1, 1); build(1, 1, n); while (m--){
scanf("%d", &op);
if (op == 1){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x], y);
} else if (op == 2){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x] + sz[x] - 1, y);
} else{
scanf("%d", &x);
printf("%lld\n", find_sum(x, 1));
}
} return 0;
}

第二种方法:

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)    for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define lson i << 1, L, mid
#define rson i << 1 | 1, mid + 1, R typedef long long LL; const int N = 300010; LL a[N], sum[N << 2], lazy[N << 2], y;
int f[N], fp[N], son[N], deep[N], father[N], sz[N], top[N];
int x, tot, n, m, op;
vector <int> v[N]; void dfs1(int x, int fa, int dep){
deep[x] = dep;
father[x] = fa;
son[x] = 0;
sz[x] = 1;
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == fa) continue;
dfs1(u, x, dep + 1);
sz[x] += sz[u];
if (sz[son[x]] < sz[u]) son[x] = u;
}
} void dfs2(int x, int tp){
top[x] = tp;
f[x] = ++tot;
fp[f[x]] = x;
if (son[x]) dfs2(son[x], tp);
int ct = (int)v[x].size();
rep(i, 0, ct - 1){
int u = v[x][i];
if (u == father[x] || u == son[x]) continue;
dfs2(u, u);
}
} inline void pushup(int i){ sum[i] = sum[i << 1] + sum[i << 1 | 1]; } inline void pushdown(int i, int L, int R){
sum[i] += lazy[i] * (R - L + 1);
lazy[i << 1] += lazy[i];
lazy[i << 1 | 1] += lazy[i];
lazy[i] = 0;
} void build(int i, int L, int R){
if (L == R){ sum[i] = a[fp[L]]; return; }
int mid = (L + R) >> 1;
build(lson);
build(rson);
pushup(i);
} void update(int i, int L, int R, int l, int r, LL val){
if (l == L && R == r){
lazy[i] += val;
return ;
} int mid = (L + R) >> 1;
if (r <= mid) update(lson, l, r, val);
else if (l > mid) update(rson, l, r, val);
else{
update(lson, l, mid, val);
update(rson, mid + 1, r, val);
} pushdown(i << 1, L, mid);
pushdown(i << 1 | 1, mid + 1, R);
pushup(i);
} LL query_sum(int i, int L, int R, int l, int r){
pushdown(i, L, R);
if (L == l && R == r) return sum[i];
int mid = (L + R) >> 1;
if (r <= mid) return query_sum(lson, l, r);
else if (l > mid) return query_sum(rson, l, r);
else return query_sum(lson, l, mid) + query_sum(rson, mid + 1, r);
} int main(){ scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%lld", a + i);
rep(i, 2, n){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
} dfs1(1, 0, 0);
dfs2(1, 1); build(1, 1, n); while (m--){
scanf("%d", &op);
if (op == 1){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x], y);
} else if (op == 2){
scanf("%d%lld", &x, &y);
update(1, 1, n, f[x], f[x] + sz[x] - 1, y);
} else{
scanf("%d", &x);
LL ans = 0;
for (int i = x; i; i = father[top[i]])
ans += query_sum(1, 1, n, f[top[i]], f[i]);
printf("%lld\n", ans);
}
} return 0;
}

BZOJ 4034 [HAOI2015]树上操作(树链剖分)的更多相关文章

  1. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  2. bzoj 4034: [HAOI2015]树上操作——树链剖分

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  3. BZOJ 4034[HAOI2015]树上操作(树链剖分)

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点 ...

  4. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  5. bzoj 4034 [HAOI2015] T2(树链剖分,线段树)

    4034: [HAOI2015]T2 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1536  Solved: 508[Submit][Status] ...

  6. BZOJ 4034 [HAOI2015]T2(树链剖分)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4034 [题目大意] 有一棵点数为 N 的树,以点 1 为根,且树点有边权. 有 M 个 ...

  7. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  8. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  9. P3178 [HAOI2015]树上操作 树链剖分

    这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...

  10. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

随机推荐

  1. nyoj-1103-区域赛系列一多边形划分

    http://acm.nyist.net/JudgeOnline/problem.php?pid=1103 区域赛系列一多边形划分 时间限制:1000 ms  |  内存限制:65535 KB 难度: ...

  2. java在线聊天项目0.4版本 制作服务端接收连接,客户端连接功能 新增客户端窗口打开时光标指向下边文本域功能,使用WindowListener监听WindowAdapter

    建一个服务端类ChatServer,用于设置端口接收连接 package com.swift; import java.io.IOException; import java.net.ServerSo ...

  3. http post get 同步异步

    下面首先介绍一下一些基本的概念---同步请求,异步请求,GET请求,POST请求. 1.同步请求从因特网请求数据,一旦发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可以进行下一步操作.也 ...

  4. C# 使用Epplus导出Excel [1]:导出固定列数据

    C# 使用Epplus导出Excel [1]:导出固定列数据 C# 使用Epplus导出Excel [2]:导出动态列数据 C# 使用Epplus导出Excel [3]:合并列连续相同数据 C# 使用 ...

  5. 摘抄 Promise原理

    1.简单的promise: //极简promise雏形 function Promise(fn){ var value = null; callbacks = [];//callback为数组,因为可 ...

  6. Leetcode 71 简化路径simplify-path(栈)

    给定一个文档 (Unix-style) 的完全路径,请进行路径简化. 例如,path = "/home/", => "/home"path = " ...

  7. 【OS_Linux】清空终端屏幕的方法

    使用clear命令或Ctrl+L组合键来清空终端屏幕,它不是真正的清空了,而是给人以错觉,当向上滚动鼠标后发现屏幕的内容依然在. 使用printf '\033c'才真正意义上清空了屏幕,它同DOS下的 ...

  8. 重置windows用户漫游配置文件

    1.备份用户数据 2.删除或修改漫游配置文件 3.用户PC管理员登陆,删除本地用户缓存文件 注册表打开: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows N ...

  9. skkyk:线段树浅谈

    推荐前辈学姐博客文章,写的很细 https://www.cnblogs.com/TheRoadToTheGold/p/6254255.html 学学半,此随笔主要是加深自己对线段树的理解 题目:洛谷P ...

  10. Python基础之(判断,循环,列表,字典)

    一.python介绍 Python是一种简单易学,功能强大的编程语言,它有高效率的高层数据结构,简单而有效地实现面向对象编程.Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在 ...