题意:俩头带有颜色的木棒,要求按颜色同的首尾相连,可能否?

思路:棒子本身是一条边,以俩端为顶点(同颜色共点),即求是否有无向图欧拉路(每条棒子只有一根,

边只能用一次,用一次边即选一次棒子)。

先判断图是否连通,并查集判断即可,有fa[i]==i的,表示“根”,连通图只能有一个这样根,大于1不连通。

在判断欧了图是否存在,度权为偶数或者只有2俩奇数为欧拉图,否则不是。

未1a原因:

1,有一段时间没写并查集了,这次并查集,并的时候也写错!SB啊!

2. 特殊情况,0个点的时候输出可能

#include<iostream>  //594ms
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
int degree[510001];
int trie[1010001][27];int numtrie=0;
int numv=0;
int fa[510001];
int find(int x)
{
if(x!=fa[x]) fa[x]=find(fa[x]);
return fa[x];
}
int insert_getnum(string s) //字典树,本质hash判重,是否同一个颜色,并返回该结点
{
int u=0;
int len=s.size();
for(int i=0;i<len;i++)
{
if(trie[u][s[i]-'a']==0)
trie[u][s[i]-'a']=++numtrie;
u=trie[u][s[i]-'a'];
}
if(trie[u][26]==0)
trie[u][26]=++numv;
return trie[u][26];
}
bool is_together() //是否连通
{
int count=0;
for(int i=1;i<=numv;i++)
{
if(i==fa[i])count++;
if(count>1)break;
}
if(count>1)return 0;
return 1;
}
bool is_euler() //有欧拉?
{
int count=0;
for(int i=1;i<=numv;i++)
{
if(degree[i]&1)count++;
}
if(count==0||count==2)return 1;
else return 0;
}
int main()
{
char s1[12],s2[12];
for(int i=1;i<500001;i++)
fa[i]=i;
while(scanf("%s %s",s1,s2)!=EOF)
{
string s=s1;
string ss=s2;
int x=insert_getnum(s);
int y=insert_getnum(ss);
degree[x]++;
degree[y]++;
int xx=find(x); //因为并查集在这里跪了俩次了!
int yy=find(y);
if(xx!=yy) //这样合并啊!
fa[yy]=xx;
}
if(numv==0||is_euler()&&is_together())printf("Possible\n");
else printf("Impossible\n");
return 0;
}

poj2513字典树+欧拉图判断+并查集断连通的更多相关文章

  1. Colored Sticks (字典树哈希+并查集+欧拉路)

    Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 27704   Accepted: 7336 Description You ...

  2. hdu 5458 Stability(树链剖分+并查集)

    Stability Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Total ...

  3. [BZOJ3038]上帝造题的七分钟2 树状数组+并查集

    考试的时候用了两个树状数组去优化,暴力修改,树状数组维护修改后区间差值还有最终求和,最后骗了40分.. 这道题有好多种做法,求和好说,最主要的是开方.这道题过的关键就是掌握一点:在数据范围内,最多开方 ...

  4. 【BZOJ4025】二分图(线段树分治,并查集)

    [BZOJ4025]二分图(线段树分治,并查集) 题面 BZOJ 题解 是一个二分图,等价于不存在奇环. 那么直接线段树分治,用并查集维护到达根节点的距离,只计算就好了. #include<io ...

  5. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

  6. 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT

    题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...

  7. 【bzoj2870】最长道路tree 树的直径+并查集

    题目描述 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 输入 第一行N 第二行N个数分别表示1~N的点权v[i] 接下来N-1行每 ...

  8. 「CF319E」Ping-Pong「线段树」「并查集」

    题意 规定区间\((a,b)\)到区间\((c,d)\)有边当且仅当\(c<a<d\)或\(c<b<d\). 起初区间集合为空.有\(n\)(\(n\leq 10^5\))次操 ...

  9. C. Edgy Trees Codeforces Round #548 (Div. 2) 并查集求连通块

    C. Edgy Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

随机推荐

  1. Java生成固定长度的随机字符串(以大小写字母和数字)

    package org.jimmy.autosearch2019.test; import java.util.ArrayList; import java.util.Random; /** * @a ...

  2. 身份证号正则校验(js校验+JAVA校验)

    js校验身份证号[15位和18位] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 ...

  3. centos7 samba配置完成后不管怎么登陆都会显示密码错误的解决方案

    添加系统用户 useradd samba 添加samba用户 smbpasswd -a samba 激活samba用户 smbpasswd -e samba 1.win+r运行secpol.msc打开 ...

  4. 数据结构( Pyhon 语言描述 ) — —第9章:列表

    概念 列表是一个线性的集合,允许用户在任意位置插入.删除.访问和替换元素 使用列表 基于索引的操作 基本操作 数组与列表的区别 数组是一种具体的数据结构,拥有基于单个的物理内存块的一种特定的,不变的实 ...

  5. python 学习总结5

    字符串类型及操作 一.字符串类型的表示 (1)字符串:由0个或多个字符组成的有序字符序列  例如:“请输入带有符号的温度值” 或者‘c’都是字符串 (2)字符串是字符的有序序列,可以对其中的字符进行索 ...

  6. shell-code-2-传参

    #在执行shell脚本时,带参数,如./test.sh 1 2 3,则在脚本test.sh内,参数表示为$n的形式,$1为第一个参数,以此类推. echo "第一个参数为:$1"; ...

  7. (转)去除背景色的方法,适合iOS5/6/7/8.0beta

    通常使用UISearchbar都需要去除其背景色来与自己的界面风格保持协调,但是UISearchbar的设计随着iOS版本的升级不断地在发生着变化,下面我们通过分析UISearchbar在各个iOS版 ...

  8. LeetCode(125) Valid Palindrome

    题目 Given a string, determine if it is a palindrome, considering only alphanumeric characters and ign ...

  9. PYDay3-初识python

    Python 种类 c.j.iron.ruby等,主要有三类:cpython.xxxpython.pypy 种类繁多我们精通一种即可 编译流程: py代码->字节码->机器码->计算 ...

  10. centos7中的网卡一致性命名规则、网卡重命名方法

    一致性网络设备命名(Consistent Network Device Naming) 背景介绍: 在centos5的时候,我们习惯了eth0这样的网络设备命名,在centos6发现网络设备变成了em ...