1.       硬件特性:

【Flash的硬件实现机制】

Flash全名叫做Flash Memory,属于非易失性存储设备(Non-volatile Memory Device),与此相对应的是易失性存储设备(Volatile Memory Device)。关于什么是非易失性/易失性,从名字中就可以看出,非易失性就是不容易丢失,数据存储在这类设备中,即使断电了,也不会丢失,这类设备,除了Flash,还有其他比较常见的入硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDR SDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。

Flash的内部存储是MOSFET,里面有个悬浮门(Floating Gate),是真正存储数据的单元。

在Flash之前,紫外线可擦除(uv-erasable)的EPROM,就已经采用用Floating Gate存储数据这一技术了。

1.典型的Flash内存单元的物理结构

数据在Flash内存单元中是以电荷(electrical charge) 形式存储的。存储电荷的多少,取决于图中的外部门(external gate)所被施加的电压,其控制了是向存储单元中冲入电荷还是使其释放电荷。而数据的表示,以所存储的电荷的电压是否超过一个特定的阈值Vth来表示。

【SLC和MLC的实现机制】

Nand Flash按照内部存储数据单元的电压的不同层次,也就是单个内存单元中,是存储1位数据,还是多位数据,可以分为SLC和MLC:

1.       SLC,Single Level Cell:

单个存储单元,只存储一位数据,表示成1或0.

就是上面介绍的,对于数据的表示,单个存储单元中内部所存储电荷的电压,和某个特定的阈值电压Vth,相比,如果大于此Vth值,就是表示1,反之,小于Vth,就表示0.

对于nand Flash的数据的写入1,就是控制External Gate去充电,使得存储的电荷够多,超过阈值Vth,就表示1了。而对于写入0,就是将其放电,电荷减少到小于Vth,就表示0了。

关于为何Nand Flash不能从0变成1,我的理解是,物理上来说,是可以实现每一位的,从0变成1的,但是实际上,对于实际的物理实现,出于效率的考虑,如果对于,每一个存储单元都能单独控制,即,0变成1就是,对每一个存储单元单独去充电,所需要的硬件实现就很复杂和昂贵,同时,所进行对块擦除的操作,也就无法实现之前的,一闪而过的速度了,也就失去了Flash的众多特性了。

2.       MLC,Multi Level Cell

与SLC相对应,就是单个存储单元,可以存储多个位,比如2位,4位等。其实现机制,说起来比较简单,就是,通过控制内部电荷的多少,分成多个阈值,通过控制里面的电荷多少,而达到我们所需要的存储成不同的数据。比如,假设输入电压是Vin=4V(实际没有这样的电压,此处只是为了举例方便),那么,可以设计出2的2次方=4个阈值, 1/4 的Vin=1V,2/4的Vin=2V,3/4的Vin=3V,Vin=4V,分别表示2位数据00,01,10,11,对于写入数据,就是充电,通过控制内部的电荷的多少,对应表示不同的数据。

对于读取,则是通过对应的内部的电流(与Vth成反比),然后通过一系列解码电路完成读取,解析出所存储的数据。这些具体的物理实现,都是有足够精确的设备和技术,才能实现精确的数据写入和读出的。

单个存储单元可以存储2位数据的,称作2的2次方=4 Level Cell,而不是2 Level Cell,这点,之前差点搞晕了。。。,同理,对于新出的单个存储单元可以存储4位数据的,称作 2的4次方=16 Level Cell。

【关于如何识别SLC还是MLC

Nand Flash设计中,有个命令叫做Read ID,读取ID,意思是读取芯片的ID,就像大家的身份证一样,这里读取的ID中,是读取好几个字节,一般最少是4个,新的芯片,支持5个甚至更多,从这些字节中,可以解析出很多相关的信息,比如此Nand Flash内部是几个芯片(chip)所组成的,每个chip包含了几片(Plane),每一片中的页大小,块大小,等等。在这些信息中,其中有一个,就是识别此flash是SLC还是MLC。下面这个就是最常见的Nand Flash的datasheet中所规定的,第3个字节,3rd byte,所表示的信息,其中就有SLC/MLC的识别信息:

 

Description

I/O7

I/O6

I/O5 I/O4

I/O3 I/O2

I/O1 I/O0

Internal

Chip Number

1

2

4

8

0    0

0    1

1    0

1    1

Cell Type

2 Level Cell

4 Level Cell

8 Level Cell

16 Level Cell

0     0

0     1

1     0

1     1

Number of

Simultaneously

Programmed Pages

1

2

4

8

0     0

0     1

1     0

1     1

Interleave Program

Between multiple chips

Not Support

Support

0

1

Cache Program

Not Support

Support

0

1

表1.Nand Flash 第3个ID的含义

【Nand Flash的物理存储单元的阵列组织结构】

Nand flash的内部组织结构,此处还是用图来解释,比较容易理解:

图2.Nand Flash物理存储单元的阵列组织结构

上图是K9K8G08U0A的datasheet中的描述。

简单解释就是:

1.一个nand flash由很多个块(Block)组成,块的大小一般是128KB,256KB,512KB,此处是128KB。

2.每个块里面又包含了很多页(page)。每个页的大小,对于现在常见的nand flash多数是2KB,更新的nand flash是4KB,这类的,页大小大于2KB的nand flash,被称作big block,对应的发读写命令地址,一共5个周期(cycle),而老的nand flash,页大小是256B,512B,这类的nand flash被称作small block,。地址周期只有4个。

而块,也是Nand Flash的擦除操作的基本/最小单位。

3.每一个页,对应还有一块区域,叫做空闲区域(spare area)/冗余区域(redundant area),而Linux系统中,一般叫做OOB(Out Of Band),这个区域,是最初基于Nand Flash的硬件特性:数据在读写时候相对容易错误,所以为了保证数据的正确性,必须要有对应的检测和纠错机制,此机制被叫做EDC(Error Detection Code)/ECC(Error Code Correction, 或者 Error Checking and Correcting),所以设计了多余的区域,用于放置数据的校验值。

页是Nand Flash的写入操作的基本/最小的单位。

【Nand Flash数据存储单元的整体架构】

简单说就是,常见的nand flash,内部只有一个chip,每个chip只有一个plane。

而有些复杂的,容量更大的nand flash,内部有多个chip,每个chip有多个plane。这类的nand flash,往往也有更加高级的功能,比如下面要介绍的Multi Plane Program和Interleave Page Program等。

比如,型号为K9K8G08U0A这个芯片(chip),内部有两个K9F4G08U0A,每个K9F4G08U0A包含了2个Plane,每个Plane是1Gb,所以K9F4G08U0A的大小是1Gb×2=2Gb=256MB,因此,K9K8G08U0A内部有2个K9F4G08U0A,即4个Plane,总大小是4×256MB=1GB。

而型号是K9WAG08U1A的nand flash,内部包含了2个K9K8G08U0A,所以,总容量是K9K8G08U0A的两倍=1GB×2=2GB,类似地K9NBG08U5A,内部包含了4个K9K8G08U0A,总大小就是4×1GB=4GB。

【Flash名称的由来】

Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次性地将一个block,常见的块的大小是128KB/256KB。。,全部擦除为1,也就是里面的内容全部都是0xFF了,由于是一下子就擦除了,相对来说,擦除用的时间很短,可以用一闪而过来形容,所以,叫做Flash Memory。中文有的翻译为 (快速)闪存。

【Flash相对于普通设备的特殊性】

1.       上面提到过的,Flash最小操作单位,有些特殊。

一般设备,比如硬盘/内存,读取和写入都是以bit位为单位,读取一个bit的值,将某个值写入对应的地址的位,都是可以按位操作的。

但是Flash由于物理特性,使得内部存储的数据,只能从1变成0,这点,可以从前面的内部实现机制了解到,只是方便统一充电,不方便单独的存储单元去放电,所以才说,只能从1变成0,也就是释放电荷。

所以,总结一下Flash的特殊性如下:

普通设备(硬盘/内存等)

Flash

读取/写入的叫法

读取/写入

读取/编程(Program)①

读取/写入的最小单位

Bit/位

Page/页

擦除(Erase)操作的最小单位

Bit/位

Block/块 ②

擦除操作的含义

将数据删除/全部写入0

将整个块都擦除成全是1,也就是里面的数据都是0xFF ③

对于写操作

直接写即可

在写数据之前,要先擦除,然后再写

表2.Flash和普通设备相比所具有的特殊性

注:

① 之所以将写操作叫做编程,是因为,flash 和之前的EPROM,EEPROM继承发展而来,而之前的EEPROM(Electrically Erasable Programmable Read-Only Memory),往里面写入数据,就叫做编程Program,之所以这么称呼,是因为其对数据的写入,是需要用电去擦除/写入的,就叫做编程。

② 对于目前常见的页大小是2K/4K的Nand Flash,其块的大小有128KB/256KB/512KB等。而对于Nor Flash,常见的块大小有64K/32K等。

③在写数据之前,要先擦除,内部就都变成0xFF了,然后才能写入数据,也就是将对应位由1变成0。

如何编写linux下nand flash驱动-1的更多相关文章

  1. 如何编写linux下nand flash驱动-4

    2.       软件方面 如果想要在Linux下编写Nand Flash驱动,那么就先要搞清楚Linux下,关于此部分的整个框架.弄明白,系统是如何管理你的nand flash的,以及,系统都帮你做 ...

  2. 如何编写linux下nand flash驱动-2

    [Nand Flash引脚(Pin)的说明] 图3.Nand Flash引脚功能说明 上图是常见的Nand Flash所拥有的引脚(Pin)所对应的功能,简单翻译如下: 1.       I/O0 ~ ...

  3. 如何编写linux下nand flash驱动-3

    [读(read)操作过程详解] 以最简单的read操作为例,解释如何理解时序图,以及将时序图 中的要求,转化为代码. 解释时序图之前,让我们先要搞清楚,我们要做的事情:那就是,要从nand flash ...

  4. Linux 下 Nand Flash 驱动说明

    注册 driver_register 通过 module_init(s3c2410_nand_init);注册 Nand Flash 驱动. 在 s3c2410_nand_init ()中通过 dri ...

  5. Linux 下 Nand Flash 驱动主要数据结构说明

    s3c2410 专有数据结构 s3c2410_nand_set struct s3c2410_nand_set { int                    nr_chips;     /* 芯片 ...

  6. 15.1 linux操作系统下nand flash驱动框架2

    当我们需要在操作系统上读写普通文件的时候,总是需要一层层往下,最终到达硬件相关操作,当然底层设备大多数都是块设备 NAND FLASH就作为一个最底层的块设备. 而写驱动,就是要构建硬件与操作系统之间 ...

  7. Linux 下 Nand Flash 调用关系

    Nand Flash 设备添加时数据结构包含关系 struct mtd_partition        partition_info[] --> struct s3c2410_nand_set ...

  8. Smart210学习记录----nand flash驱动

    [详解]如何编写Linux下Nand Flash驱动  :http://www.cnblogs.com/linux-rookie/articles/3016990.html 当读写文件请求到来的时候, ...

  9. 【驱动】linux系统下nand flash驱动程序框架

    linux操作系统下nand flash驱动框架 当我们需要在操作系统上读写普通文件的时候,总是需要一层层往下,最终到达硬件相关操作,当然底层设备大多数都是块设备 NAND FLASH就作为一个最底层 ...

随机推荐

  1. CodeForces 556 --Case of Fake Numbers

    B. Case of Fake Numbers time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  2. ISAPI映射路径错误,导致K3Cloud打不开。

    今天一个同事说她的K3Cloud打不开,一看是页面报500错误,具体信息看图片: 问题: ISAPI配置的映射路径错了,多了个反斜线. 解决办法: 在IIS管理器中找到ISAPI筛选器,删除掉就行了.

  3. 【BZOJ4517】排列计数(排列组合)

    题意:1-n的一个序列,其中有m个a[i]=i,求方案数 n,m<=1000000 题意:显然ANS=c(n,m)*d[n-m] d[i]为错排方案数=d[i-1]*n+(-1)^n ; ..] ...

  4. CSS属性操作一

    CSS属性操作 一.CSS text 1.文本颜色:color 颜色属性被用来设置文字的颜色.颜色是通过CSS最经常的指定: • 十六进制值 - 如: #FF0000 • 一个RGB值 - 如: RG ...

  5. Animation显示ListView的每一条记录

    activity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...

  6. Reactor和Proactor模式的讲解(关于异步,同步,阻塞与非阻塞)

    在高性能的I/O设计中,有两个比较著名的模式Reactor和Proactor模式,其中Reactor模式用于同步I/O,而Proactor运用于异步I/O操作. 在比较这两个模式之前,我们首先的搞明白 ...

  7. poj1523求割点以及割后连通分量数tarjan算法应用

    无向图,双向通道即可,tarjan算法简单应用.点u是割点,条件1:u是dfs树根,则u至少有2个孩子结点.||条件2:u不是根,dfn[u]=<low[v],v是u的孩子结点,而且每个这样的v ...

  8. 安装mysql时出现应用程序无法正常启动(0xc000007b)、初始化失败以及密码忘记怎样重置?

    https://blog.csdn.net/zztingfeng/article/details/80155624

  9. POJ 1780 【手工递归】【欧拉回路】

    题意: 1.提供密码的位数. 2.密码的输入可以一直保持,取后n位作为密码.如果密码正确则开锁. 3.设计一种方法使得在输入最少的情况下破译.(即保证每个密码只输入一次) 4.输出输入的数字的序列. ...

  10. Codeforces 938G(cdq分治+可撤销并查集+线性基)

    题意: 有一个无向连通图,支持三个操作: 1 x y d : 新建一条x和y的无向边,长度为d 2 x y    :删除x和y之间的无向边 3 x y    :询问x到y的所有路径中(可以绕环)最短的 ...