codeforces 689E E. Mike and Geometry Problem(组合数学)
题目链接:
3 seconds
256 megabytes
standard input
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6 题意: 在n个区间里选k个,得到的f等于区间交的点数;求所有的选择方案的和; 思路: 对于每个点可以发现,当这个点被num个线段覆盖时,这个点就会被选C(num,k)次,ans=∑C(num,k);
但是区间很大,点的数目居多,所以不可能一个点一个点的这样算,可以发现,相邻的点如果被相同数目的线段覆盖,那么这些点就可以合并成一个区间,所以ans=∑len*C(num,k),len表示这个区间点的个数;看这个点被覆盖了多少次可以采用跟树状数组那样的方法,左右端点+-1; AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=2e5+;
const int maxn=;
const double eps=1e-; int n,k,l[N],r[N];
LL dp[N]; map<int,int>mp; LL pow_mod(int x,LL y)
{
LL s=,base=(LL)x;
while(y)
{
if(y&)s=s*base%mod;
base=base*base%mod;
y>>=;
}
return s;
} void Init()
{
dp[k]=;
For(i,k+,N)
{
LL x=i,temp=pow_mod(x-k,mod-);
dp[i]=dp[i-]*x%mod*temp%mod;
}
}
vector<int>ve;
int main()
{
read(n);read(k);
Init();
For(i,,n)
{
read(l[i]);
mp[l[i]-]++;
ve.push_back(l[i]-);
read(r[i]);
mp[r[i]]--;
ve.push_back(r[i]);
}
sort(ve.begin(),ve.end());
LL ans=;
int num=,prepo=-1e9-;
int w=ve.size();
for(int i=;i<w;i++)
{
int tempo=ve[i],len=tempo-prepo;
if(num>=k)ans=ans+dp[num]*(LL)len%mod,ans%=mod;
if(prepo!=tempo) prepo=tempo,num+=mp[tempo];
}
cout<<ans<<"\n";
return ;
}
codeforces 689E E. Mike and Geometry Problem(组合数学)的更多相关文章
- codeforces 689 E. Mike and Geometry Problem 组合数学 优先队列
给定一个函数: f([l,r]) = r - l + 1; f(空集) = 0; 即f函数表示闭区间[l,r]的整点的个数 现在给出n个闭区间,和一个数k 从n个区间里面拿出k个区间,然后对这k个区间 ...
- codeforces 361 E - Mike and Geometry Problem
原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...
- CodeForces 689E Mike and Geometry Problem (离散化+组合数)
Mike and Geometry Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/I Description M ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- CodeForces 689E Mike and Geometry Problem
离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- 【codeforces 798C】Mike and gcd problem
[题目链接]:http://codeforces.com/contest/798/problem/C [题意] 给你n个数字; 要求你进行若干次操作; 每次操作对第i和第i+1个位置的数字进行; 将 ...
随机推荐
- webservice学习第二天
1 课程回顾 l 什么是webservice 远程调用技术:系统和系统之间的调用,获取远程系统里的业务数据 Webservice使用http传输SOAP协议的数据的一种远程调用技术 l Webserv ...
- 二分图最大权完美匹配KM算法
KM算法二分图 KM求得二分图与普通二分图的不同之处在于:此二分图的每条边(男生女生)上都附了权值(好感度).然后,求怎样完美匹配使得权值之和最大. 这,不止一般的麻烦啊. 可以通过一个期望值来求. ...
- git学习(一)----基础知识
git是世界上最好用最先进的版本管理系统,那么什么是版本管理系统呢,百度上是这样说的: 举个例子,当你写毕业论文的时候,灵感爆发了修改或者删除了一些内容,但是你还想保留之前的版本,就需要另存为不同的w ...
- BZOJ:[JSOI2009]游戏Game【二分图匹配乱搞】
题目大意:n*m的棋盘,其中有些区域是禁区,两个人在棋盘上进行博弈,后手选择棋子的初始位置,然后先后手轮流将棋子往上下左右移动,走过的区域不能再走,问能否有一个位置使得后手必胜 Input 输入数据首 ...
- 【判连通】HDU 6113 度度熊的01世界
http://acm.hdu.edu.cn/showproblem.php?pid=6113 [题意] 度度熊是一个喜欢计算机的孩子,在计算机的世界中,所有事物实际上都只由0和1组成. 现在给你一个n ...
- 【Kruscal最小生成树】D. Jungle Roads
https://www.bnuoj.com/v3/contest_show.php?cid=9154#problem/D [Accepted] #include<iostream> #in ...
- UVA12345 (带修改的莫队)
UVA12345 Dynamic len Problem : 给一个序列,每次询问一个区间里面的数字种类数量,或者修改某一个位置的值. Solution : 第一关键字分块排序左端点,第二关键字分块排 ...
- resin web项目的 编码问题
问题描述: 服务器迁移,迁移以后Linux系统编码由 UTF-8 变成了GBK !!! 导致在resin 中运行java web项目,调用 http 接口,解析http 接口的返回内容 如:xml 时 ...
- Flex里监听mouseDownOutside事件解决弹出窗口点击空白关闭功能
其实当用户在使用 PopUpManager 打开的某个组件外部单击时,会从该组件分派一个mouseDownOutside事件 监听该事件就能实现点击空白处关闭窗口的功能 this.addEventLi ...
- XCode 或者ITune 添加账号时,提示:This action could not be completed. 或者 Access Privileges
当遇到This action could not be completed 或者 You do not have enough access privileges for this operation ...