HDU6069:Counting Divisors(因子数统计|区间筛)
题意
计算\(\sum_{i=l}^kd(i^k)(d_i代表i的因子数)\)
分析
比赛搞了3个小时都没搞出来,有两个思维上的trick
1.要先遍历素数,再遍历[L,R],而不是枚举每个数,然后对每个数进行质因数分解
2.比赛的时候我有想过枚举素数,但是忘记因子计算公式可以分开相乘,而不用一次性求粗来,导致我们队的崩盘,我要背锅!!!
具体的做法:枚举每个素数,并枚举[L,R]中的素数的倍数,对于每个倍数,统计因子个数,用b[i]代表第i个数的因子数,具体键代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
const ll mod = 998244353;
const int maxn=1000000;
int prime[maxn+10];
bool p[maxn+10];
inline void get_prime()
{
F(i,2,maxn)
{
if(!p[i]) prime[++prime[0]]=i;//prime[0]存储1~maxn的质数个数
for(int j=1;j<=prime[0]&&i*prime[j]<=maxn;++j)
{
p[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
int t;
ll L,R,K,ans;
ll a[maxn+10],b[maxn+10];//a数组存储对于每个质数除后的数,b数组存放i的因子个数
void calc()
{
int len=R-L+1;
R(i,0,len) a[i]=i+L,b[i]=1;
for(int i=1;prime[i]*1LL*prime[i]<=R;++i)
{
ll x=prime[i],k=L/x*x,cnt;
if(k<L) k+=x;
for(;k<=R;k+=x) if(a[k-L]%x==0)
{
cnt=0;
while(a[k-L]%x==0) cnt++,a[k-L]/=x;
cnt=cnt*K+1;
b[k-L]=b[k-L]*cnt%mod;
}
}
ans=0;
//R(i,0,len) printf("%I64d%c",a[i],i==len-1?'\n':' ' );
R(i,0,len)
{
if(a[i]!=1) b[i]=b[i]*(K+1)%mod;
//printf("%I64d%c",b[i],i==len-1?'\n':' ' );
ans=(ans+b[i])%mod;
}
}
int main()
{
get_prime();
for(scanf("%d",&t);t--;)
{
scanf("%lld %lld %lld",&L,&R,&K);
calc();
printf("%I64d\n",ans );
}
return 0;
}
HDU6069:Counting Divisors(因子数统计|区间筛)的更多相关文章
- hdu6069 Counting Divisors 晒区间素数
/** 题目:hdu6069 Counting Divisors 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意:求[l,r]内所有数的k次方 ...
- 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...
- 【区间筛】2017多校训练四 HDU6069 Counting Divisors
http://acm.hdu.edu.cn/showproblem.php?pid=6069 [题意] 给定l,r,k,求 d(n)是n的因子个数 [思路] [Accepted] #include&l ...
- 【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors
d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7) #include<cstdio> using namespace std; ...
- 2017 Multi-University Training Contest - Team 4——HDU6069&&Counting Divisors
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题目意思:首先解释一下d[n]这个函数表示n有多少个因子,百度一下可以知道这个函数是一个非完全积 ...
- [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)
题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0(n) be the number of positive diviso ...
- HDU 6069 Counting Divisors
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- DIVCNT2&&3 - Counting Divisors
DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...
- SPOJ 20713 DIVCNT2 - Counting Divisors (square)
DIVCNT2 - Counting Divisors (square) #sub-linear #dirichlet-generating-function Let \sigma_0(n)σ0 ...
随机推荐
- 生活娱乐 ATM机键盘余温泄露密码
安全系统存漏洞 ATM机键盘余温或泄露密码 ATM机会泄露你的银行卡密码? 据美国<大众科学>网站8月30日报道,你的手指在ATM机上留下的余温能让尾随你而来的黑客准确获知你的密码. 加利 ...
- Andriod 从源码的角度详解View,ViewGroup的Touch事件的分发机制
转自:xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/21696315) 今天这篇文章主要分析的是Android的事件分发机制, ...
- 基本SCTP套接字编程常用函数
sctp_bindx函数:允许SCTP套接字捆绑一个特定地址子集 #include <netinet/sctp.h> // 若成功返回0,出错返回-1 int sctp_bindx(int ...
- 项目问题总结2:GUID区分大写和小写吗?
问题描写叙述: 近期在做项目的过程中,遇到一个问题,将从基础系统查询出来的课程ID作为參数去考评系统里查询考试信息,却什么也查不出来,调试了半天不知道什么原因. 问题分析: 静下心来思考一下,能够肯定 ...
- Swift开发教程--怎样播放图片动画
废话少说,直接上代码: var barsAnim = UIImageView(frame: self.view.frame); barsAnim.animationImages = NSArray() ...
- activity栈管理的3种方式
一.背景 在android开发过程最经常使用的组件非activity莫属. 通过分析activity的各种跳转,执行同学能够分析用户的各种行为.更重要的一点是在做插件化的过程中,我们经常会对activ ...
- 应用require.js进行javascript模块化编程小试一例
长久以来都渴望应用javascript的模块化编程.今日紧迫更甚,岁月蹉跎,已经不能再等了. 拜读阮一峰的有关文章已经好几遍,文章写得真好,简洁流畅,头头是道,自觉有点明白了.但经验告诉我们,一定要亲 ...
- 文件管理中心iOS版简介
App Store地址:https://itunes.apple.com/cn/app/id1023365565?mt=8 文件管理中心-装机必备的文件管家,专业的rar-zip 解压工具,局域网看片 ...
- C/C++实现删除字符串的首尾空格
StdStringTrimTest.cpp #include <iostream> int main() { std::string str(" 字符串 String " ...
- Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么 ...