bzoj2839
容斥原理+组合数学
看见这种恰有k个的题一般都是容斥原理,因为恰有的限制比较强,一般需要复杂度较高的方法枚举,而容斥就是转化为至少有k个,然后通过容斥原理解决
我们先选出k个元素作为交集,有C(n,k)种可能,那么剩下的n-k个元素既可以选也可以不选,一共有2^(n-k)种选法,每种选法对应了一个集合,也就是说一共有2^(n-k)种不同的集合,我们希望在这n-k个元素中选出若干个集合,使他们的交集为空,于是我们枚举选多少个元素,i=0->n-k,这样有C(n-k,i)种选法,然后我们使用容斥原理来计算i个元素交集为空集的集合数量,对于给定元素交集大小至少为i的情况,我们可以跟刚才一样先选出i个元素作为交集,方案数同上,然后方案数是2^(2^(n-i-k))-1,因为我们有2^(n-i-k)个集合,每个集合可以选或不选,因为已经选出i个元素作为交集,所以交集大小至少是i,其他的集合随便选就满足至少是i
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
const int N = , mod = ;
int n, k;
ll ans, pw = ;
ll inv[N], fac[N], facinv[N];
ll C(int n, int k)
{
return fac[n] * facinv[k] % mod * facinv[n - k] % mod;
}
int main()
{
scanf("%d%d", &n, &k);
inv[] = inv[] = fac[] = fac[] = facinv[] = facinv[] = ;
for(int i = ; i <= n; ++i)
{
fac[i] = fac[i - ] * (ll)i % mod;
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
facinv[i] = facinv[i - ] * inv[i] % mod;
}
for(int i = n - k; i >= ; --i)
{
ans = (((ans + ((i & ) ? - : ) * C(n - k, i) * ((pw - ) % mod + mod) % mod) % mod) % mod + mod) % mod;
pw = pw * pw % mod;
}
ans = ((ans * C(n, k) % mod) % mod + mod) % mod;
printf("%lld\n", ans);
return ;
}
bzoj2839的更多相关文章
- 【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了
再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交 ...
- 【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...
- 【BZOJ2839】集合计数 组合数+容斥
[BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数 ...
- 「BZOJ2839」集合计数
「BZOJ2839」集合计数 题目大意: 一个包含 \(n\) 个数的集合有 \(2^n\) 个子集,从这些子集中取出若干个集合(至少一个),使他们的交集的元素个数恰好为 \(k\),求方案数,答案对 ...
- 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 229 Solved: 120[Submit][Status][Discuss] ...
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- BZOJ2839集合计数
题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~ ...
- bzoj2839 集合计数
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser Logout 捐赠本站 2839: 集合计数 Time ...
随机推荐
- Filter和Interceptor的终归作用还是从入口修改或验证请求进来的数据
Filter是Java EE标准.Inteceptor是Spring 标准. Filter在servlet前面,Interveptor在servlet之后 Filter和Inteceptor都可以改变 ...
- 从SOA到BFV【普元的一份广告文章】
人类对美好生活的追求是一切技术进步的原动力. 简便.快捷.联结……,这些移动互联的价值让它正成为最贴近消费者的力量.人和设备,设备和设备,人和服务,人和企业,企业和企业都发生了连接.诸如微信.携程.大 ...
- Halcon导出的cpp, VC++环境配置
方式一: 1.project ->设置(Alt+F7) -> C/C++ ->分类:预处理器 ->附加包括路径 添加:$(HALCONROOT)/include,$(HAL ...
- Ubuntu16.04安装openjdk-7-jdk
ubuntu14.04 升级16.04后会默认将jdk1.7删除,因此需要重新安装. Ubuntu16.04 安装Oracle JDK 和 Open jdk 默认JDK 安装比较轻松,但根据项目调整 ...
- 【分享】利用Apache的Htaccess Files命令限制訪问文件类型,Files正则
假设你在你的模板目录中有非常多PSD HTML模板,那么用接下来这个htaccess文件能够保护限制訪问: 文件D:\WebSite\ZBPHP.COM\www\Tpl\.htaccess 所有源代码 ...
- Intel MIC
http://en.wikipedia.org/wiki/Intel_MIC Intel MIC From Wikipedia, the free encyclopedia Intel Man ...
- 关于Android滑动冲突的解决方法(二)
之前的一遍学习笔记主要就Android滑动冲突中,在不同方向的滑动所造成冲突进行了了解,这样的冲突非常easy理解,当然也非常easy解决.今天,就同方向的滑动所造成的冲突进行一下了解,这里就先以垂直 ...
- python调用nmap进行扫描
#coding=utf-8 import nmap import optparse import threading import sys import re ''' 需安装python_nmap包, ...
- attribute constructor&destructor
attribute constructor&destructor 在看openwrt里libnl-tiny这个库的时候,遇到了C里面的构造函数这个概念. static void __init ...
- LeetCode——Binary Tree Level Order Traversal
Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...