ZOJ 3874 Permutation Graph 分治NTT
Permutation Graph
Time Limit: 2 Seconds Memory Limit: 65536 KB
Edward has a permutation {a1, a2, … an}. He finds that if he connects each pair (ai, aj) such that i < j and ai > aj, he will get a graph.
For example, if the permutation is {2, 3, 1, 4}, then 1 and 2 are connected and 1 and 3 are connected.
Edward lost his permutation, but he does know the connected components of the corresponding graph. He wants to know how many permutations will result in the same connected components.
Note that two vertices u, v belong to the same connected component if there exists a sequence of vertices starting with u and ending with v such that every two subsequent vertices in the sequence are connected by an edge.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n, m (1 ≤ m ≤ n ≤ 100000), indicating the length of the permutation and the number of connected components in the graph.
Each of the following m lines contains an integer ci which denotes the size of i-th connected component, followed by ci distinct integers vi,1, vi,2, … vi,ci which denotes the connected component (1 ≤ ci, vi,1, vi,2, … vi,ci ≤ n).
It is guaranteed that every number will appear in exact one connected component and c1 + c2 + … + cm = n.
Output
For each case, output the answer modulo 786433.
Sample Input
2
4 4
1 1
1 2
1 3
1 4
4 2
3 1 2 3
1 4
Sample Output
1
3
Hint
For the second case, the three permutations is: {2, 3, 1, 4}, {3, 2, 1, 4}, {3, 1, 2, 4}.
题解:
一个联通块的点必须是连续的
构造一个dp方程,令dp[i] 表示 i 个连续的点,能形成联通块的 方案数
那么 : dp[i] = n! - i*dp[n - i] 这里 i 取遍1~n-1
发现 i * dp[n-i], 就是卷积,取的模又是 费马素数, 那就NTT求解了
还要用cdq分治优化下
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e6+, M = 1e3+,inf = 2e9,mod = ; const LL G = , P = ; LL mul(LL x,LL y){
return (x*y-(LL)(x/(long double)P*y+1e-)*P+P)%P;
}
LL qpow(LL x,LL k,LL p){
LL ret=;
while(k){
if(k&) ret=mul(ret,x);
k>>=;
x=mul(x,x);
}
return ret;
}
LL wn[];
void getwn(){
for(int i=; i<=; ++i){
int t=<<i;
wn[i]=qpow(G,(P-)/t,P);
}
}int len;
void NTT_init() {
getwn();
} void NTT(LL y[],int op){
for(int i=,j=len>>,k; i<len-; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>;
while(j>=k){
j-=k;
k>>=;
}
if(j<k) j+=k;
}
int id=;
for(int h=; h<=len; h<<=) {
++id;
for(int i=; i<len; i+=h){
LL w=;
for(int j=i; j<i+(h>>); ++j){
LL u=y[j],t=mul(y[j+h/],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/]=u-t+P;
if(y[j+h/]>=P) y[j+h/]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-){
for(int i=; i<len/; ++i) swap(y[i],y[len-i]);
LL inv=qpow(len,P-,P);
for(int i=; i<len; ++i) y[i]=mul(y[i],inv);
}
} int T,n,m;
LL y[N],yy[N],dp[N],f[N];
void cdq(int ll,int rr) {
if(ll == rr) return ;
cdq(ll,mid);
len = ;
while(len <= rr-ll+) len<<=;
for(int i = ; i < mid-ll+; ++i) y[i] = dp[ll+i];
for(int i = mid-ll+; i < len; ++i) y[i] = ;
for(int i = ; i < len; ++i) yy[i] = f[i+];
NTT(y,),NTT(yy,);
for(int i = ; i < len; ++i) y[i] = (y[i] * yy[i])%P;
NTT(y,-);
for(int i = mid; i < rr; ++i)
dp[i+] = ((dp[i+] - y[i - ll])%mod + mod) % mod;
cdq(mid+,rr);
}
int main() {
NTT_init();
f[] = ;
for(int i = ; i <= ; ++i) {
f[i] = 1LL* f[i-] * i % mod;
dp[i] = f[i];
}
cdq(,);
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
int ans = ;
for(int i = ; i <= m; ++i) {
int x,y,mi = inf,mx = ;
scanf("%d",&x);
ans = (ans * dp[x]) % mod;
for(int j = ; j <= x; ++j) {
scanf("%d",&y);
mx = max(mx,y);
mi = min(mi,y);
}
if(mx - mi + != x) ans = ;
}
printf("%d\n",ans);
}
return ;
}
ZOJ 3874 Permutation Graph 分治NTT的更多相关文章
- ZOJ 3874 Permutation Graph (分治NTT优化DP)
题面:vjudge传送门 ZOJ传送门 题目大意:给你一个排列,如果两个数构成了逆序对,就在他们之间连一条无向边,这样很多数会构成一个联通块.现在给出联通块内点的编号,求所有可能的排列数 推来推去容易 ...
- ZOJ 3874 Permutation Graph ——分治 NTT
发现每一块一定是按照一定的顺序的. 然后与标号无关,并且相同大小的对答案的影响相同. 然后列出递推式,上NTT+分治就可以了. 然后就可以与输入同阶处理答案了. #include <map> ...
- ZOJ3874 Permutation Graph 【分治NTT】
题目链接 ZOJ3874 题意简述: 在一个序列中,两点间如果有边,当且仅当两点为逆序对 给定一个序列的联通情况,求方案数对\(786433\)取模 题解 自己弄了一个晚上终于弄出来了 首先\(yy\ ...
- ZOJ3874 Permutation Graph
Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has a permutation {a1, a2, … an}. He finds ...
- [gdoi2018 day1]小学生图论题【分治NTT】
正题 题目大意 一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数. \(1\leq n,m\leq 10^5\) 解题思路 先考虑\(m=0\) ...
- #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- 【BZOJ-3456】城市规划 CDQ分治 + NTT
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...
- CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...
随机推荐
- javascript异常cannot read property xx of null 的错误
一般报这种异常或者错误,是因为试图从null中再读一个属性导致的. 比如:var myAttr=myObj.data.Name; 假如这个时候myObj.data是null,那么再试图读取data的N ...
- rabbitmq php 学习
参考文档:http://www.cnblogs.com/phpinfo/p/4104551...http://blog.csdn.net/historyasamirror/ar... 依赖包安装 yu ...
- nginx 的日志切割
nginx的日志切割脚本 说明:在nginx的配置文件中nginx.conf并没有定义access_log的位置, 在/usr/local/nginx/conf/vhost/下的配置文件中定义了acc ...
- redis介绍和安装(一)
Redis介绍:redis是一个key-value存储系统. 和Memcached类似,它支持存储的value类型相对更多,包括 string(字符串). list(链表).set(集合).zset( ...
- [BZOJ1582] [Usaco2009 Hol]Holiday Painting 节日画画(线段树)
传送门 线段树区间修改傻题 #include <cstdio> #include <cstring> #include <iostream> #define N 5 ...
- PHP中的验证码类(准备篇)
<!--code.php内容--> <?php //开启session session_start(); include "vcode.class.php"; / ...
- LA 2797 平面区域dfs
题目大意:一个平面区域有n条线段,问能否从(0,0)处到达无穷远处(不穿过任何线段) 分析:若两条线段有一个端点重合,这种情况是不能从端点重合处穿过的 的.因此对每个端点延长一点,就可以避免这个问题. ...
- 洛谷P3143 [USACO16OPEN]钻石收藏家Diamond Collector
题目描述 Bessie the cow, always a fan of shiny objects, has taken up a hobby of mining diamonds in her s ...
- python常用模块详解(一)
一.简介 模块是一个保存了Python代码的文件.模块能定义函数,类和变量.模块里也能包含可执行的代码 模块分为三种: 自定义模块 内置标准模块 开源模块(第三方) 自定义模块: 模块导入 impor ...
- hdu 2686 费用流 / 双线程DP
题意:给一个方阵,求从左上角出到右下角(并返回到起点),经过每个点一次不重复,求最大获益(走到某处获得改点数值),下来时每次只能向右或向下,反之向上或向左. 俩种解法: 1 费用流法:思路转化:从左 ...