参考:https://www.cnblogs.com/N-C-Derek/archive/2012/07/11/usaco_09_open_tower.html

虽然长得很像斜率优化,但是应该不算……

贪心是错的,对拍出好多异常情况

s[i]为前缀和,从顶向下dp;设f[i]为本层宽度,g[i]为这是第几层,转移是g[i]=max(g[j]+1||s[j]-s[i]>f=[j]&&j>i)

如果k>j,除非j不满足条件,否则j最优,用一个单调栈维护能做贡献的j即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,l=1,r=1,q[N],s[N],f[N],g[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
s[i]=s[i-1]+read();
q[1]=n+1;
for(int i=n;i>=1;i--)
{
while(l<r&&s[q[l+1]-1]-s[i-1]>=f[q[l+1]])
l++;
f[i]=s[q[l]-1]-s[i-1];
g[i]=g[q[l]]+1;
while(l<r&&f[i]-s[i-1]<f[q[r]]-s[q[r]-1])
r--;
q[++r]=i;
}
printf("%d\n",g[1]);
return 0;
}

bzoj 1233: [Usaco2009Open]干草堆tower【dp+单调栈】的更多相关文章

  1. bzoj 1233: [Usaco2009Open]干草堆tower

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  2. bzoj 1233: [Usaco2009Open]干草堆tower 【想法题】

    首先这题的$n^3$的DP是比较好想的 $f[i][j]$表示用前$i$包干草 且最顶层为第$j+1$包到第$i$包 所能达到的最大高度 然而数据范围还是太大了 因此我们需要去想一想有没有什么单调性 ...

  3. ●BZOJ 1233 [Usaco2009Open] 干草堆 tower

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1233 留坑.以后再来看看. (绝望,无奈,丧心...) (这个题的证明真的很诡异啊,看得我稀 ...

  4. 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  5. bzoj1233 [Usaco2009Open]干草堆tower 【单调队列dp】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1233 单调队列优化的第一题,搞了好久啊,跟一开始入手斜率优化时感觉差不多... 这一题想通了 ...

  6. BZOJ1233 [Usaco2009Open]干草堆tower 【单调队列优化dp】

    题目链接 BZOJ1233 题解 有一个贪心策略:同样的干草集合,底长小的一定不比底长大的矮 设\(f[i]\)表示\(i...N\)形成的干草堆的最小底长,同时用\(g[i]\)记录此时的高度 那么 ...

  7. BZOJ1233 [Usaco2009Open]干草堆tower[贪心+单调队列优化]

    地址 注意思路!多看几遍! 很巧妙的一道题.不再是决策点以dp值中一部分含j项为维护对象,而是通过维护条件来获取决策. 首先有个贪心策略,让底层的宽度尽可能小,才能让高度尽可能高.所以应该倒着dp,表 ...

  8. 1233: [Usaco2009Open]干草堆tower

    传送门 感觉正着做不太好搞,考虑倒过来搞 容易想到贪心,每一层都贪心地选最小的宽度,然后发现 $WA$ 了... 因为一开始多选一点有时可以让下一层宽度更小 然后有一个神奇的结论,最高的方案一定有一种 ...

  9. bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp

    1233: [Usaco2009Open]干草堆tower Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 983  Solved: 464[Submi ...

随机推荐

  1. android开发里跳过的坑——“org.apache.http.message.BasicHeaderValueFormatter.INSTANCE”错误

    在android4.4.2的系统里,写了一个系统应用,其中有一个功能是通过表单上传图片的,使用了httpclient-4.5.3.jar httpmime-4.5.3.jar httpcore-4.4 ...

  2. 【Codevs1237&网络流24题餐巾计划】(费用流)

    题意:一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同. 假设第 i 天需要 ri块餐巾(i=1,2,…,N).餐厅可以购买新的餐巾,每块餐巾的费用为 p 分: 或者把旧餐巾送到快洗部,洗一块需 ...

  3. Rikka with Phi 线段树

    Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds ...

  4. Writing Code-Codeforces511C**

    http://codeforces.com/problemset/problem/544/C 完全背包 dp[i][j]表示第i行有j个bug #include<stdio.h> #inc ...

  5. HashSet源码分析1

    import java.util.HashSet; import java.util.Iterator; import java.util.Set; public class SetTest { pu ...

  6. Spring集成Jedis(不依赖spring-data-redis)(单机/集群模式)(待实践)

    Jedis是Redis的Java客户端,Spring将Jedis连接池作为一个Bean来配置.如果在Spring Data的官网上可以发现,Spring Data Redis已经将Jedis集成进去了 ...

  7. Hive之执行计划分析(explain)

    Hive是通过把sql转换成对应mapreduce程序,然后提交到Hadoop上执行,查看具体的执行计划可以通过执行explain sql知晓 一条sql会被转化成由多个阶段组成的步骤,每个步骤有执行 ...

  8. Ubuntu下Zabbix安装及使用问题

    1.configure: error: MySQL library not found MySQL library not found root@kallen:~# apt-get install l ...

  9. 12、Cocos2dx 3.0游戏开发找小三之3.0中的生命周期分析

    重开发人员的劳动成果.转载的时候请务必注明出处:http://blog.csdn.net/haomengzhu/article/details/27706303 生命周期分析 在前面文章中我们执行了第 ...

  10. Android关于Task的一些实践之SingleTask, SingleInstance和TaskAffinity

    上一篇文章粗略地介绍了一下关于Android中Task的基本知识.只是实践才是检验真理的唯一标准,所以.今天就来试验一下Task中的launchMode是否真的实现了文档所说的那样. 首先.定义三个A ...