【杂文】5亿大质数表(5e8)
【杂文】5亿大质数表(5e8)
在写哈希,刷数论题时曾一度想要查质数,\(F**k\) 百度文库数据又少,翻页蛋疼,还不给复制,真的是服了。
于是在我闲的蛋疼的时候就搞了个质数表出来。。。。
下载链接:这是一个链接 \(QAQ\) \((bj1b)\)
话不多说,先上代码。
........
噢,不,我还有要说的话。
为了加速,搞了一大堆头文件优化,代码采用的是线筛,共花了 \(78.226\) \(s\) ,比我想象的要慢些。
表格刷了 \(5\) 亿以内的所有质数,再往上就因内存过大而报错了,没办法,只有这么多了。。
输出来的 \(txt\) 文本文件刚好 \(250Mb\) ,好衰啊T_T。。。。
\(updata(2019.12.15):\) 突然意识到没用快读,怪不得这么慢QAQ(改进后只花了 \(26.166\) \(s\))。
#pragma GCC diagnostic error "-std=c++11"
#pragma GCC target("avx")
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include<cstdio>
#include<ctime>
#define Re register int
const int N=5e8;
int cnt,pri[N/3];bool pan[N+1];
inline void get_pri(){
for(Re i=2;i<=N;++i){
if(!pan[i])pri[++cnt]=i;
for(Re j=1;j<=cnt&&i*pri[j]<=N;++j){
pan[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
}
inline void print(Re x){if(x>9)print(x/10);putchar('0'+x-x/10*10);}
int main(){
freopen("5e8大质数表(5亿).txt","w",stdout);
get_pri();
for(Re j=0,i=1;i<=cnt;++i){
if(j++>8)puts(""),j=0;
print(pri[i]),putchar(' ');
}
printf("\nTime: %lf s\n",(double)clock()/(double)CLOCKS_PER_SEC);
}
【杂文】5亿大质数表(5e8)的更多相关文章
- 洛谷 P1072 Hankson 的趣味题 || 打质数表的分解质因数
方法就是枚举,根据b0和b1可以大大减小枚举范围,方法类似这个http://blog.csdn.net/hehe_54321/article/details/76021615 将b0和b1都分解质因数 ...
- MySQL 上亿大表优化实践
目录 背景 分析 select xxx_record语句 delete xxx_record语句 测试 实施 索引优化后 delete大表优化为小批量删除 总结 背景 XX实例(一主一从)xxx告警中 ...
- Jam's math problem(思维)
Jam's math problem Submit Status Practice HDU 5615 Description Jam has a math problem. He just lea ...
- 关于素数表-C++
废话不多说,先贴代码: #include <iostream> using namespace std; bool is_prime(int n) { || n == ) return f ...
- [转载] 散列表(Hash Table)从理论到实用(上)
转载自:白话算法(6) 散列表(Hash Table)从理论到实用(上) 处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通 ...
- c经典算法
1. 河内之塔 说明 河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时 北越的首都,即现在的胡志明市:1883年法国数学家 Ed ...
- 白话算法(6) 散列表(Hash Table)从理论到实用(上)
处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通过一般化的推理来论证理解,并可归纳成一般公式,而这个一般公式适用于任何特殊 ...
- Java经典算法大全
1.河内之塔.. 2.Algorithm Gossip: 费式数列. 3. 巴斯卡三角形 4.Algorithm Gossip: 三色棋 5.Algorithm Gossip: 老鼠走迷官(一) 6. ...
- 莫比乌斯反演&各种筛法
不学莫反,不学狄卷,就不能叫学过数论 事实上大概也不是没学过吧,其实上赛季头一个月我就在学这东西,然鹅当时感觉没学透,连杜教筛复杂度都不会证明,所以现在只好重新来学一遍了(/wq 真·实现了水平的负增 ...
随机推荐
- MVC系统学习7—Action的选择过程
在Mvc源码的ControllerActionInvoker的InvokeAction方法里面有一个FindAction方法,FindAction方法在ControllerDescriptor里面定义 ...
- Amoeba新版本MYSQL读写分离配置
标签:mysql 数据库 读写分离 休闲 amoeba 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://skyson.blog.5 ...
- hihoCoder#1062 最近公共祖先·
原题地址 A和A的共同祖先是A,即使A没有在之前的家谱中出现过!被这个坑了,WA了很久... 比如:小头爸爸是大头儿子他爹,问:隔壁王叔叔和隔壁王叔叔的最近祖先是谁?,答:隔壁王叔叔. 代码: #in ...
- android开发里跳过的坑——listview不显示
在蓝牙回调接口public void onLeScan(BluetoothDevice device, int arg1, byte[] arg2)里面调用adpter.notifyDataSetCh ...
- [bzoj2463][中山市选2009]谁能赢呢?_博弈论
博弈论 bzoj-2463 中山市选-2009 题目大意:题目链接. 注释:略. 想法: 如果$n$是偶数的话就可以被多米诺骨牌恰好覆盖,这样的话只需要先手先走向(1,1)对应的第二段,后者必定会将棋 ...
- Remove Duplicates from Sorted List (链表)
Given a sorted linked list, delete all duplicates such that each element appear only once. For examp ...
- java 8种基本类型与对应的包装类
数据类型 包装类 字节长度 默认值 有效位 byte Byte 1 0 -128~127 short Short 2 0 -32768~32767 int Integer 4 0 -2^31-1~2^ ...
- MongoDB小结20 - find【查询条件$size】
size可以获得指定数组长度的文档 db.user.find({"fruit":{"$size":3}},{"_id":0}) { &quo ...
- Java之旅(1)—Class类
看到Class的时候,我们是不是会一下子想到我们敲代码中的class呢?此Class非彼class,这里讲的Class类实际上就是java类的统称,我们能够将其称之为抽象的类不是详细的一个类的名字. ...
- centos 命令行中 * 和 . 的区别
錯誤 cp /home/test1/* /home/test2/ –a 用參數*將不可以複製linux中.開頭的隱藏文件 正確 cp /home/test1/. home ...