• Hive是通过把sql转换成对应mapreduce程序,然后提交到Hadoop上执行,查看具体的执行计划可以通过执行explain sql知晓
  • 一条sql会被转化成由多个阶段组成的步骤,每个步骤有执行顺序和依赖关系,可以称之为有向无环图(DAG:Directed Acyclic Graph)
  • 这些步骤可能包含:元数据的操作,文件系统的操作,map/reduce计算等
  • 语法格式:
EXPLAIN [EXTENDED|DEPENDENCY|AUTHORIZATION|LOCKS|VECTORIZATION] query
  • explain输出内容包括:

    • 抽象语法树
    • 执行计划不同阶段的依赖关系
    • 各个阶段的描述
  • extended输出更加详细的信息
  • denpendency输出依赖的数据源
  • authorization输出执行sql授权信息
  • locks 输出锁情况
  • vectorization相关
    • Adds detail to the EXPLAIN output showing why Map and Reduce work is not vectorized.
    • Syntax: EXPLAIN VECTORIZATION [ONLY] [SUMMARY|OPERATOR|EXPRESSION|DETAIL]
    • ONLY option suppresses most non-vectorization elements.
    • SUMMARY (default) shows vectorization information for the PLAN (is vectorization enabled) and a summary of Map and Reduce work.
    • OPERATOR shows vectorization information for operators. E.g. Filter Vectorization. Includes all information of SUMMARY.
    • EXPRESSION shows vectorization information for expressions. E.g. predicateExpression. Includes all information of SUMMARY and OPERATOR.
    • DETAIL shows detail-level vectorization information. It includes all information of SUMMARY, OPERATOR, and EXPRESSION.
  • 带上FORMATTED 关键子,可以json格式输出
  • sort order: +表示升序 -表示降序
  • 大概了解一下相关的执行情况
# explain默认
0: jdbc:hive2://> explain select * from sort_test sort by id desc limit 10;
+--------------------------------------------------------------------------------------------------+--+
| Explain |
+--------------------------------------------------------------------------------------------------+--+
| STAGE DEPENDENCIES: |
| Stage-1 is a root stage |
| Stage-2 depends on stages: Stage-1 |
| Stage-0 depends on stages: Stage-2 |
| |
| STAGE PLANS: |
| Stage: Stage-1 |
| Map Reduce |
| Map Operator Tree: |
| TableScan |
| alias: sort_test |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Select Operator |
| expressions: id (type: int), name (type: string) |
| outputColumnNames: _col0, _col1 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Reduce Output Operator |
| key expressions: _col0 (type: int) |
| sort order: - |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| value expressions: _col1 (type: string) |
| Reduce Operator Tree: |
| Select Operator |
| expressions: KEY.reducesinkkey0 (type: int), VALUE._col0 (type: string) |
| outputColumnNames: _col0, _col1 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Limit |
| Number of rows: 10 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| File Output Operator |
| compressed: false |
| table: |
| input format: org.apache.hadoop.mapred.SequenceFileInputFormat |
| output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat |
| serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe |
| |
| Stage: Stage-2 |
| Map Reduce |
| Map Operator Tree: |
| TableScan |
| Reduce Output Operator |
| key expressions: _col0 (type: int) |
| sort order: - |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| value expressions: _col1 (type: string) |
| Reduce Operator Tree: |
| Select Operator |
| expressions: KEY.reducesinkkey0 (type: int), VALUE._col0 (type: string) |
| outputColumnNames: _col0, _col1 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| Limit |
| Number of rows: 10 |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| File Output Operator |
| compressed: false |
| Statistics: Num rows: 8 Data size: 890 Basic stats: COMPLETE Column stats: NONE |
| table: |
| input format: org.apache.hadoop.mapred.TextInputFormat |
| output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat |
| serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe |
| |
| Stage: Stage-0 |
| Fetch Operator |
| limit: 10 |
| Processor Tree: |
| ListSink |
| |
+--------------------------------------------------------------------------------------------------+--+ # authorization
0: jdbc:hive2://> explain formatted authorization select * from sort_test sort by id desc limit 10;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--+
| Explain |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--+
| {"CURRENT_USER":"root","OPERATION":"SWITCHDATABASE","INPUTS":["badou@sort_test"],"OUTPUTS":["hdfs://master:9000/tmp/hive/root/fac1e10c-babb-4927-886e-411b3e9190fb/hive_2018-10-18_11-04-47_534_1155924552647075339-1/-mr-10000"]} |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--+

参考资料

【0】Hive wiki - LanguageManual Explain

【1】hive入门学习:explain执行计划的理解

Hive之执行计划分析(explain)的更多相关文章

  1. MySQL学习系列2--MySQL执行计划分析EXPLAIN

    原文:MySQL学习系列2--MySQL执行计划分析EXPLAIN 1.Explain语法 EXPLAIN SELECT …… 变体:   EXPLAIN EXTENDED SELECT …… 将执行 ...

  2. MySQL学习系列2--MySQL执行计划分析EXPLAIN [原创]

    1.Explain语法 EXPLAIN SELECT …… 变体:   EXPLAIN EXTENDED SELECT …… 将执行计划“反编译”成SELECT语句,运行SHOW WARNINGS 可 ...

  3. 分析oracle的执行计划(explain plan)并对对sql进行优化实践

    基于oracle的应用系统很多性能问题,是由应用系统sql性能低劣引起的,所以,sql的性能优化很重要,分析与优化sql的性能我们一般通过查看该sql的执行计划,本文就如何看懂执行计划,以及如何通过分 ...

  4. Hive SQL执行流程分析

    转自 http://www.tuicool.com/articles/qyUzQj 最近在研究Impala,还是先回顾下Hive的SQL执行流程吧. Hive有三种用户接口: cli (Command ...

  5. MongoDB执行计划分析详解

    要保证数据库处于高效.稳定的状态,除了良好的硬件基础.高效高可用的数据库架构.贴合业务的数据模型之外,高效的查询语句也是不可少的.那么,如何查看并判断我们的执行计划呢?我们今天就来谈论下MongoDB ...

  6. SQL执行计划分析

    explain执行计划中的字段以及含义在下面的博客中有详细讲述: https://blog.csdn.net/da_guo_li/article/details/79008016 执行计划能告诉我们什 ...

  7. 转:Oracle 执行计划(Explain Plan) 说明

    Oracle 执行计划(Explain Plan) 说明 原贴地址:http://blog.csdn.net/tianlesoftware/article/details/5827245   如果要分 ...

  8. mysql,存储引擎,事务,锁,慢查询,执行计划分析,sql优化

    基础篇:MySql架构与存储引擎 逻辑架构图: 连接层: mysql启动后(可以把mysql类比为一个后台的服务器),等待客户端请求,当请求到来后,mysql建立一个一个线程处理(线程池则分配一个空线 ...

  9. MongoDB干货系列2-MongoDB执行计划分析详解(2)(转载)

    写在之前的话 作为近年最为火热的文档型数据库,MongoDB受到了越来越多人的关注,但是由于国内的MongoDB相关技术分享屈指可数,不少朋友向我抱怨无从下手. <MongoDB干货系列> ...

随机推荐

  1. GCC的函数声明问题

    Thinking in C++ 第四章 GCC 不需要再MAIN函数前声明 编译也能通过. G++不行.

  2. php中字符与字节的区别

    字符: 字符是可使用多种不同字符方案或代码页来表示的抽象实体.例如,Unicode UTF-16 编码将字符表示为 16 位整数序列,而 Unicode UTF-8 编码则将相同的字符表示为 8 位字 ...

  3. python3爬取微博评论并存为xlsx

    python3爬取微博评论并存为xlsx**由于微博电脑端的网页版页面比较复杂,我们可以访问手机端的微博网站,网址为:https://m.weibo.cn/一.访问微博网站,找到热门推荐链接我们打开微 ...

  4. laravel如何自定义控制器目录

    默认控制器在App\Http\Controllers目录下,如何自定义目录呢? 首先我们看一下laravel的请求周期 我们看一下服务提供者RouteServicePrivder文件中的一个函数 /* ...

  5. 04XML CSS

    XML CSS 1. XML CSS <?xml-stylesheet  href ="样式表的URI"  type= "text/css" ?> ...

  6. [模板] Splay

    欠了好久的Splay,以后就它了. 默写真不容易,过几天估计就忘了.. 整个Splay真的精妙,不拖泥带水那种.. 前驱后继之所以不能用rk转到根,是因为这个数不一定存在.. kth中<=老忘记 ...

  7. 【design pattern】工厂方法模式和抽象工厂模式

    前言 设计模式分为三大类: 创建型模式:工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式: 结构型模式:适配器模式.装饰器模式.代理模式.外观模式.桥接模式.组合模式.享元模式: 行为型模式 ...

  8. 零基础入门学习Python(2)--用Python设计第一个游戏

    前言 小甲鱼的Python课程都是围绕着一个个小游戏,进行Python的讲解,由易入难. 小游戏流程图 Created with Raphaël 2.1.2Startprint('---------- ...

  9. prop 和 attr 中一些羞羞的事情

    引言 前几天做一个迷你京东小项目的时候涉及到一个全选的小功能,一开始用的是 attr,但是效果完全不是自己想要的,当商品按钮点击过一次后,attr就无法对其状态进行更改,最后谷歌了一番发现需要用 pr ...

  10. 关于Python构建微服务的思考(一)

    一:什么是微服务? 微服务是一种架构风格,一个大型复杂软件应用由一个或多个微服务组成. 系统中的各个微服务可被独立部署,各个微服务之间是松耦合的. 每个微服务仅关注于完成一件任务并很好地完成该任务. ...