题目链接:https://cn.vjudge.net/problem/CodeForces-894C

In a dream Marco met an elderly man with a pair of black glasses. The man told him the key to immortality and then disappeared with the wind of time.

When he woke up, he only remembered that the key was a sequence of positive integers of some length n, but forgot the exact sequence. Let the elements of the sequence be a1, a2, ..., an. He remembered that he calculated gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n and put it into a set Sgcd here means the greatest common divisor.

Note that even if a number is put into the set S twice or more, it only appears once in the set.

Now Marco gives you the set S and asks you to help him figure out the initial sequence. If there are many solutions, print any of them. It is also possible that there are no sequences that produce the set S, in this case print -1.

Input

The first line contains a single integer m (1 ≤ m ≤ 1000) — the size of the set S.

The second line contains m integers s1, s2, ..., sm (1 ≤ si ≤ 106) — the elements of the set S. It's guaranteed that the elements of the set are given in strictly increasing order, that means s1 < s2 < ... < sm.

Output

If there is no solution, print a single line containing -1.

Otherwise, in the first line print a single integer n denoting the length of the sequence, n should not exceed 4000.

In the second line print n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the sequence.

We can show that if a solution exists, then there is a solution with n not exceeding 4000 and ai not exceeding 106.

If there are multiple solutions, print any of them.

Example

Input
4
2 4 6 12
Output
3
4 6 12
Input
2
2 3
Output
-1

Note

In the first example 2 = gcd(4, 6), the other elements from the set appear in the sequence, and we can show that there are no values different from 2, 4, 6 and 12 among gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n.

题意:

有一个数组a[1~n],对他们所有的1<=i<=j<=n求 gcd( a[i] ~ a[j] ),得到集合S;

该集合S满足:元素不重复、集合内元素满足严格单增;

现在给你一个S,让你求出a;

题解:

gcd( a[1] ~ a[n] )显然是所有gcd( a[i] ~ a[j] )里最小的且满足 gcd( a[1] ~ a[n] ) | ∀gcd( a[i] ~ a[j] ),所以在集合S中S[1]应该满足 S[1] | S[i] ;

然后另外一个性质是gcd(num) = num,所以所有的a[i]都应该出现在S里;

我们当然不能像题目里样例那样求a[1~n],这样有点难,考虑另外的方法;

考虑让每个gcd(a[i])=S[i],然后让gcd(a[i]~a[j])=S[1](i<j),怎么操作呢,在S[2]~S[m]之间都插入S[1]即可。

AC代码:

#include <bits/stdc++.h>
using namespace std; int m,S[];
int main()
{
cin>>m;
for(int i=;i<=m;i++) scanf("%d",&S[i]); bool ok=;
for(int i=;i<=m;i++)
{
if(S[i]%S[]!=)
{
ok=;
break;
}
}
if(!ok)
{
printf("-1\n");
return ;
} printf("%d\n", m + ( (m-==)?():(m-) ) );
printf("%d ",S[]);
for(int i=;i<=m;i++)
{
if(i!=) printf(" %d ",S[]);
printf("%d",S[i]);
}
cout<<endl;
}

codeforces 894C - Marco and GCD Sequence - [有关gcd数学题]的更多相关文章

  1. codeforces #447 894A QAQ 894B Ralph And His Magic Field 894C Marco and GCD Sequence

    A.QAQ 题目大意:从给定的字符串中找出QAQ的个数,三个字母的位置可以不连续 思路:暴力求解,先找到A的位置,往前扫,往后扫寻找Q的个数q1,q2,然 后相乘得到q1*q2,这就是这个A能够找到的 ...

  2. Codeforces 894.C Marco and GCD Sequence

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  3. Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence【构造/GCD】

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  4. CF894C Marco and GCD Sequence

    题目链接:http://codeforces.com/contest/894/problem/C 题目大意: 按照严格递增的顺序给出 \(m\) 个数作为公因数集,请你构造出一个数列,对于数列中的任意 ...

  5. Codeforces Round #554 (Div. 2)-C(gcd应用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...

  6. Codeforces Round #651 (Div. 2) A. Maximum GCD(数论)

    题目链接:https://codeforces.com/contest/1370/problem/A 题意 有 $n$ 个数大小分别为 $1$ 到 $n$,找出两个数间最大的 $gcd$ . 题解 若 ...

  7. Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))

    传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...

  8. Codeforces Round #691 (Div. 2) C. Row GCD (数学)

    题意:给你两个数组\(a\)和\(b\),对于\(j=1,...,m\),找出\(a_1+b_j,...,a_n+b_j\)的\(gcd\). 题解:我们很容易的得出\(gcd\)的一个性质:\(gc ...

  9. 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去

    写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...

随机推荐

  1. SpringMVC由浅入深day01_6源码分析(了解)

    6 源码分析(了解) 通过前端控制器源码分析springmvc的执行过程. 入口 第一步:前端控制器接收请求 调用doDiapatch 第二步:前端控制器调用处理器映射器查找 Handler 第三步: ...

  2. Wcf使用Net.Tcp做回调操作

    契约: [ServiceContract(Namespace = "http://Microsoft.ServiceModel.Samples", SessionMode = Se ...

  3. RPM常用命令解释

    RPM软件包管理器,英文:RPM Package Manager(原Red Hat Package Manager,现在是一个递归缩写) -i安装rpm包 -u升级rpm包 -q查询已安装的软件信息 ...

  4. nodeJs学习过程之一个图片上传显示的例子

    目标 1. 在浏览器地址栏输入“http://demos/start”,进入欢迎页面,页面有一个文件上传表单: 2. 选择一张图片并提交表单,文件被上传到"http://demos/uplo ...

  5. jq判断滚动条向上还是向下

    $(document).ready(function(){ ,t=; $(window).scroll(function(e){ p = $(this).scrollTop(); if(t<=p ...

  6. 配置React Native环境及解决运行异常

    一. 安装Homebrew: Homebrew的官网(多语言版本)简单明了地介绍了如何安装和使用这个工具,;并提供了自己的Wiki. brew的安装很简单,使用一条ruby命令即可,Mac系统上已经默 ...

  7. 服务器搭建--Linux安装rabbitmq

    安装rabbitmq需要先安装erlang:安装erlang参考https://blog.csdn.net/ztx114/article/details/79912570 1.下载rabbitmq-s ...

  8. open-falcon之query

    功能 query组件,提供统一的绘图数据查询入口.query组件接收查询请求,根据一致性哈希算法去相应的graph实例查询不同metric的数据,然后汇总拿到的数据,最后统一返回给用户. 配置文件 { ...

  9. 【PHP】 毫秒级时间戳和日期格式转换

    在并发量搞得情况下.需要开启毫秒级运算 mysql  支持: `create_time` datetime() DEFAULT NULL COMMENT '创建时间', 效果 PHP 代码实现: &l ...

  10. Delphi中ClientDataSet的用法小结

    Delphi中ClientDataSet的用法小结 TClientDataSet控件继承自TDataSet,其数据存储文件格式扩展名为 .cds,是基于文件型数据存储和操作的控件.该控件封装了对数据进 ...