题目链接:https://cn.vjudge.net/problem/UVA-11168

题意:

给出平面上的n个点,求一条直线,使得所有的点在该直线的同一侧(可以在该直线上),并且所有点到该直线的距离和最小,输出该距离除以n;

题解:

显然最好能让越多的点在这条直线上就越好,但又要所有点满足在同侧,则显然要选取某条凸包边界所在直线作为ans;

求出凸包后,遍历每条凸包边,求出所有点到这条直线的距离和,找到最小的即可。

AC代码:

#include<bits/stdc++.h>
#define MAX 10005
using namespace std; //--------------------------------------计算几何模板 - st-------------------------------------- const double eps = 1e-; struct Point{
double x,y;
Point(double tx=,double ty=):x(tx),y(ty){}
};
typedef Point Vctor; //向量的加减乘除
Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);}
bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);} struct Line{
Point p;
Vctor v;
Line(Point p=Point(,),Vctor v=Vctor(,)):p(p),v(v){}
Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点
};
struct Circle{
Point c;
double r;
Circle(Point tc=Point(,),double tr=):c(tc),r(tr){}
Point point(double a){return Point( c.x + cos(a)*r , c.y + sin(a)*r);}
}; int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return (x<)?(-):();
}
bool operator == (Point A,Point B){return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;} //向量的点积,长度,夹角
double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;}
double Length(Vctor A){return sqrt(Dot(A,A));}
double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));} //叉积,三角形面积
double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;}
double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);} //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
Vctor Rotate(Vctor A,double rad){return Vctor( A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad) );}
Vctor Normal(Vctor A)
{
double L = Length(A);
return Vctor(-A.y/L, A.x/L);
} //直线的交点
Point getLineIntersection(Line L1,Line L2)
{
Vctor u = L1.p-L2.p;
double t = Cross(L2.v,u)/Cross(L1.v,L2.v);
return L1.p + L1.v*t;
} //点到直线的距离
double DistanceToLine(Point P,Line L)
{
return fabs(Cross(P-L.p,L.v))/Length(L.v);
} //点到线段的距离
double DistanceToSegment(Point P,Point A,Point B)
{
if(A==B) return Length(P-A);
Vctor v1 = B-A, v2 = P-A, v3 = P-B;
if (dcmp(Dot(v1,v2)) < ) return Length(v2);
else if (dcmp(Dot(v1,v3)) > ) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
} //点到直线的映射
Point getLineProjection(Point P,Line L)
{
return L.v + L.v*Dot(L.v,P-L.p)/Dot(L.v,L.v);
} //判断线段是否规范相交
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1),
c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
} //判断点是否在一条线段上
bool OnSegment(Point P,Point a1,Point a2)
{
return dcmp(Cross(a1 - P,a2 - P))== && dcmp(Dot(a1 - P,a2 - P))<;
} //多边形面积
double PolgonArea(Point *p,int n)
{
double area=;
for(int i=;i<n-;i++) area += Cross( p[i]-p[] , p[i + ]-p[] );
return area/;
} //判断圆与直线是否相交以及求出交点
int getLineCircleIntersection(Line L,Circle C,vector<Point> &sol)
{
double t1,t2;
double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
double e = a*a + c*c , f = *(a*b + c*d), g = b*b + d*d - C.r*C.r;
double delta = f*f - 4.0*e*g;
if(dcmp(delta)<) return ;
else if(dcmp(delta)==)
{
t1 = t2 = -f/(2.0*e);
sol.push_back(L.point(t1));
return ;
}
else
{
t1 = (-f-sqrt(delta))/(2.0*e); sol.push_back(L.point(t1));
t2 = (-f+sqrt(delta))/(2.0*e); sol.push_back(L.point(t2));
return ;
}
} //判断并求出两圆的交点
double angle(Vctor v){return atan2(v.y,v.x);}
int getCircleIntersection(Circle C1,Circle C2,vector<Point> &sol)
{
double d = Length(C1.c - C2.c);
//圆心重合
if(dcmp(d)==)
{
if(dcmp(C1.r-C2.r)==) return -; //两圆重合
else return ; //包含关系
} //圆心不重合
if(dcmp(C1.r+C2.r-d)<) return ; // 相离
if(dcmp(fabs(C1.r-C2.r)-d)>) return ; // 包含 double a = angle(C2.c - C1.c);
double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (*C1.r*d));
Point p1 = C1.point(a - da), p2 = C1.point(a + da);
sol.push_back(p1);
if(p1==p2) return ;
sol.push_back(p2);
return ;
} //求点到圆的切线
int getTangents(Point p,Circle C,vector<Line> &sol)
{
Vctor u=C.c-p;
double dis=Length(u);
if(dis<C.r) return ;
else if(dcmp(dis-C.r) == )
{
sol.push_back(Line(p,Rotate(u,M_PI/)));
return ;
}
else
{
double ang=asin(C.r/dis);
sol.push_back(Line(p,Rotate(u,-ang)));
sol.push_back(Line(p,Rotate(u,ang)));
return ;
}
} //求两圆的切线
int getCircleTangents(Circle A,Circle B,Point *a,Point *b)
{
int cnt = ;
if(A.r<B.r){swap(A,B);swap(a,b);}
//圆心距的平方
double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y);
double rdiff = A.r - B.r;
double rsum = A.r + B.r;
double base = angle(B.c - A.c);
//重合有无限多条
if(d2 == && dcmp(A.r - B.r) == ) return -;
//内切
if(dcmp(d2-rdiff*rdiff) == )
{
a[cnt] = A.point(base);
b[cnt] = B.point(base);
cnt++;
return ;
}
//有外公切线
double ang = acos((A.r - B.r) / sqrt(d2));
a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++; //一条内切线
if(dcmp(d2-rsum*rsum) == )
{
a[cnt] = A.point(base);
b[cnt] = B.point(M_PI + base);
cnt++;
}//两条内切线
else if(dcmp(d2-rsum*rsum) > )
{
double ang = acos((A.r + B.r) / sqrt(d2));
a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
}
return cnt;
} //--------------------------------------计算几何模板 - ed--------------------------------------
Point p[MAX]; bool cmp(Point p1,Point p2)
{
double tmp=Cross(p1-p[],p2-p[]);
if(!dcmp(tmp)) return Length(p1-p[])<Length(p2-p[]);
else return tmp>;
}
vector<Point> graham_scan(int n)
{
vector<Point> ans;
int idx=;
for(int i=;i<n;i++)//选出Y坐标最小的点,若Y坐标相等,选择X坐标小的点
{
if(p[i].y<p[idx].y || (p[i].y == p[idx].y && p[i].x < p[idx].x)) idx=i;
}
swap(p[],p[idx]);
sort(p+,p+n,cmp);
for(int i=;i<=;i++) ans.push_back(p[i]);
int top=;
for(int i=;i<n;i++)
{
while(top> && Cross(p[i]-ans[top-],ans[top]-ans[top-]) >= )
{
ans.pop_back();
top--;
}
ans.push_back(p[i]);
top++;
}
return ans;
} int n;
int main()
{
int t;
scanf("%d",&t);
for(int kase=;kase<=t;kase++)
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
vector<Point> ans=graham_scan(n);
double mini=0x3f3f3f3f;
for(int i=;i<ans.size();i++)
{
Point& p1 = ans[i];
Point& p2 = (i==ans.size()-)?ans[]:ans[i+];
double dist=;
for(int i=;i<n;i++) dist+=DistanceToLine(p[i],Line(p1,p2-p1));
if(dist<mini) mini=dist;
}
printf("Case #%d: %.3lf\n",kase,mini/(1.0*n));
}
}

PS.为保证跟前面的计算几何模板一致性,就把整个模板都copy了。

UVA 11168 - Airport - [凸包基础题]的更多相关文章

  1. UVA 11168 Airport(凸包)

    Airport [题目链接]Airport [题目类型]凸包 &题解: 蓝书274页,要想到解析几何来降低复杂度,还用到点到直线的距离公式,之后向想到预处理x,y坐标之和,就可以O(1)查到距 ...

  2. UVA 11168 Airport(凸包+直线方程)

    题意:给你n[1,10000]个点,求出一条直线,让所有的点都在都在直线的一侧并且到直线的距离总和最小,输出最小平均值(最小值除以点数) 题解:根据题意可以知道任意角度画一条直线(所有点都在一边),然 ...

  3. 简单几何(数学公式+凸包) UVA 11168 Airport

    题目传送门 题意:找一条直线,使得其余的点都在直线的同一侧,而且使得到直线的平均距离最短. 分析:训练指南P274,先求凸包,如果每条边都算一边的话,是O (n ^ 2),然而根据公式知直线一般式为A ...

  4. uva 11168 - Airport

    凸包+一点直线的知识: #include <cstdio> #include <cmath> #include <cstring> #include <alg ...

  5. UVa 11168(凸包、直线一般式)

    要点 找凸包上的线很显然 但每条线所有点都求一遍显然不可行,优化方法是:所有点都在一侧所以可以使用直线一般式的距离公式\(\frac{|A* \sum{x}+B* \sum{y}+C*n|}{\sqr ...

  6. Android测试基础题(三)

    今天接着给大家带来的是Android测试基础题(三).    需求:定义一个排序的方法,根据用户传入的double类型数组进行排序,并返回排序后的数组 俗话说的好:温故而知新,可以为师矣 packag ...

  7. 小试牛刀3之JavaScript基础题

    JavaScript基础题 1.让用户输入两个数字,然后输出相加的结果. *prompt() 方法用于显示可提示用户进行输入的对话框. 语法: prompt(text,defaultText) 说明: ...

  8. 小试牛刀2:JavaScript基础题

    JavaScript基础题 1.网页中有个字符串“我有一个梦想”,使用JavaScript获取该字符串的长度,同时输出字符串最后两个字. 答案: <!DOCTYPE html PUBLIC &q ...

  9. UVa 1339 Ancient Cipher --- 水题

    UVa 1339 题目大意:给定两个长度相同且不超过100个字符的字符串,判断能否把其中一个字符串重排后,然后对26个字母一一做一个映射,使得两个字符串相同 解题思路:字母可以重排,那么次序便不重要, ...

随机推荐

  1. Java显示指定类型的文件

    文件作为存储数据的单元,会根据数据类型产生很多分类,也就是所谓的文件类型.在对数据文件进行操作时,常常需要根据不同的文件类型来作不同的处理.本实例实现的是读取文件夹指定类型的文件并显示到表格控件中.这 ...

  2. fstream 和 iostream

    fstream 是对文件输入输出iostream是对屏幕上输入输出你想往文件里保存内容,或者从文件里读取内容就用fstream向屏幕输出或者从屏幕上输入,用iostream “>>”运算符 ...

  3. C#编码习惯谈

    1.  避免将多个类放在一个文件里面.2.  一个文件应该只有一个命名空间,避免将多个命名空间放在同一个文件里面.3.  一个文件最好不要超过500行的代码(不包括机器产生的代码).4.  一个方法的 ...

  4. Kafka 0.11版本新功能介绍 —— 空消费组延时rebalance

    在0.11之前的版本中,多个consumer实例加入到一个空消费组将导致多次的rebalance,这是由于每个consumer instance启动的时间不可控,很有可能超出coordinator确定 ...

  5. 这样理解 HTTPS 更容易(Maybe)

    摘要:本文尝试一步步还原HTTPS的设计过程,以理解为什么HTTPS最终会是这副模样.但是这并不代表HTTPS的真实设计过程.在阅读本文时,你可以尝试放下已有的对HTTPS的理解,这样更利于“还原”过 ...

  6. django进阶-查询(适合GET4以上人群阅读)

    前言: 下篇博客写关于bootstrap... 一.如何在脚本测试django from django.db import models class Blog(models.Model): name ...

  7. 【python3】基于 qq邮箱的邮件发送

    脚本内容: #!/usr/bin/python3 # -*- coding: UTF-8 -*- import smtplib from email.mime.text import MIMEText ...

  8. Android NDK学习(3)使用Javah命令生成JNI头文件 .

    转:http://www.cnblogs.com/fww330666557/archive/2012/12/14/2817387.html 第一步: 在Eclipse中创建android项目,并声明N ...

  9. 字符乱码 导致 ORA-12899: value too large

    问题场景: 1.创建测试表 create table t01(name varchar2(30)) 2.插入数据 SQL> insert into t01 (name) values('所有分销 ...

  10. ubuntu下文件压缩/解压缩

    ubuntu下文件压缩/解压缩 http://blog.csdn.net/luo86106/article/details/6946255 .gz 解压1:gunzip FileName.gz 解压2 ...