【转载】Apache Jena TDB CRUD operations
Apache Jena TDB CRUD operations
June 11, 2015 by maltesander
http://tutorial-academy.com/apache-jena-tdb-crud-operations/
In this tutorial we explain Apache Jena TDB CRUD operations with simple examples. The CRUD operations are implemented with the Jena programming API instead of SPARQL. We provide deeper understanding of the internal operations of the TDB triple store and show some tips and tricks to avoid common programming errors.
1. What are Apache Jena TDB and CRUD operations?
Apache Jena is an open source Java framework for Semantic Web and Linked Data applications. It offers RDF and SPARQL support an Ontology API and Reasoning support as well as triple stores (TDB and Fuseki).
CRUD operations is an abbrevation for create, read, updat and delete and represents the most basic database operations. The same operations are available for triple stores and are shown in this tutorial for TDB.
2. Install Apache Jena and TDB
You can download and add the required libraries manually and add them to your Java Build Path. I recommend to download the full Apache Jena framework to use the Jena API later on. You can download it here.
If you use Maven add the following to your dependencies:
<dependency>
<groupId>org.apache.jena</groupId>
<artifactId>apache-jena-libs</artifactId>
<type>pom</type>
<version>2.13.0</version>
</dependency>
目前最新版本 3.2.0
We use the latest stable release which is 2.13.0 at the moment. Do not forget to update your Maven project afterwards.
3. Writing Java class for TDB access
We create a class called TDBConnection. In the constructor we already initialize the TDB triple store with a path pointing to a folder to be stored. We need a Dataset which is a collection of named graphs or an unamed default graph.
public class TDBConnection
{
private Dataset ds;
public TDBConnection( String path )
{
ds = TDBFactory.createDataset( path );
}
}
If you have an ontology you want to store and manipulate you can use the following function to load it into the store. The begin and end functions mark transaction, which we strongly recommend to use throughout your application. It speeds up read operations and protects the data against data corruption, process termination or system crashes. You basically store multiple named models (namend graphs) in the dataset. You can store one default graph (no name).
public void loadModel( String modelName, String path )
{
Model model = null;
ds.begin( ReadWrite.WRITE );
try
{
model = ds.getNamedModel( modelName );
FileManager.get().readModel( model, path );
ds.commit();
}
finally
{
ds.end();
}
}
If we do not want to load an ontology or model we can build it from scratch using an add method.
public void addStatement( String modelName, String subject, String property, String object )
{
Model model = null;
ds.begin( ReadWrite.WRITE );
try
{
model = ds.getNamedModel( modelName );
Statement stmt = model.createStatement
(
model.createResource( subject ),
model.createProperty( property ),
model.createResource( object )
);
model.add( stmt );
ds.commit();
}
finally
{
if( model != null ) model.close();
ds.end();
}
}
Moving on with reading stored triples. We store the results in a List of Statements.
public List<Statement> getStatements( String modelName, String subject, String property, String object )
{
List<Statement> results = new ArrayList<Statement>();
Model model = null;
ds.begin( ReadWrite.READ );
try
{
model = ds.getNamedModel( modelName );
Selector selector = new SimpleSelector(
( subject != null ) ? model.createResource( subject ) : (Resource) null,
( property != null ) ? model.createProperty( property ) : (Property) null,
( object != null ) ? model.createResource( object ) : (RDFNode) null
);
StmtIterator it = model.listStatements( selector );
{
while( it.hasNext() )
{
Statement stmt = it.next();
results.add( stmt );
}
}
ds.commit();
}
finally
{
if( model != null ) model.close();
ds.end();
}
return results;
}
For removing triples we use the following function.
public void removeStatement( String modelName, String subject, String property, String object )
{
Model model = null;
ds.begin( ReadWrite.WRITE );
try
{
model = ds.getNamedModel( modelName );
Statement stmt = model.createStatement
(
model.createResource( subject ),
model.createProperty( property ),
model.createResource( object )
);
model.remove( stmt );
ds.commit();
}
finally
{
if( model != null ) model.close();
ds.end();
}
}
The update method can be realized by removing and adding the new triple.
Finally we want to close the triple store if we finished our transactions
public void close()
{
ds.close();
}
Now we can move on to write a small test application.
4. Write a test application for the TDB Connection
If you are familiar with JUnit tests in Java, you can use the following code. We add some triples to two named graphs (named models), check the size of the result and remove some triples.
public class TDBConnectionTest extends TestCase
{
protected TDBConnection tdb = null;
protected String URI = "http://tutorial-academy.com/2015/tdb#";
protected String namedModel1 = "Model_German_Cars";
protected String namedModel2 = "Model_US_Cars";
protected String john = URI + "John";
protected String mike = URI + "Mike";
protected String bill = URI + "Bill";
protected String owns = URI + "owns";
protected void setUp()
{
tdb = new TDBConnection("tdb");
}
public void testAll()
{
// named Model 1
tdb.addStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.addStatement( namedModel1, john, owns, URI + "BMW" );
tdb.addStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.addStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.addStatement( namedModel1, bill, owns, URI + "BMW" );
// named Model 2
tdb.addStatement( namedModel2, john, owns, URI + "Chrysler" );
tdb.addStatement( namedModel2, john, owns, URI + "Ford" );
tdb.addStatement( namedModel2, bill, owns, URI + "Chevrolet" );
// null = wildcard search. Matches everything with BMW as object!
List<Statement> result = tdb.getStatements( namedModel1, null, null, URI + "BMW");
System.out.println( namedModel1 + " size: " + result.size() + "\n\t" + result );
assertTrue( result.size() > 0);
// null = wildcard search. Matches everything with john as subject!
result = tdb.getStatements( namedModel2, john, null, null);
System.out.println( namedModel2 + " size: " + result.size() + "\n\t" + result );
assertTrue( result.size() == 2 );
// remove all statements from namedModel1
tdb.removeStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.removeStatement( namedModel1, john, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.removeStatement( namedModel1, bill, owns, URI + "BMW" );
result = tdb.getStatements( namedModel1, john, null, null);
assertTrue( result.size() == 0);
tdb.close();
}
}
If you do not want to use JUnit you can simply add the code to a main function.
public class TDBMain
{
public static void main(String[] args)
{
TDBConnection tdb = null;
String URI = "http://tutorial-academy.com/2015/tdb#";
String namedModel1 = "Model_German_Cars";
String namedModel2 = "Model_US_Cars";
String john = URI + "John";
String mike = URI + "Mike";
String bill = URI + "Bill";
String owns = URI + "owns";
tdb = new TDBConnection("tdb");
// named Model 1
tdb.addStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.addStatement( namedModel1, john, owns, URI + "BMW" );
tdb.addStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.addStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.addStatement( namedModel1, bill, owns, URI + "BMW" );
// named Model 2
tdb.addStatement( namedModel2, john, owns, URI + "Chrysler" );
tdb.addStatement( namedModel2, john, owns, URI + "Ford" );
tdb.addStatement( namedModel2, bill, owns, URI + "Chevrolet" );
// null = wildcard search. Matches everything with BMW as object!
List<Statement> result = tdb.getStatements( namedModel1, null, null, URI + "BMW");
System.out.println( namedModel1 + " size: " + result.size() + "\n\t" + result );
// null = wildcard search. Matches everything with john as subject!
result = tdb.getStatements( namedModel2, john, null, null);
System.out.println( namedModel2 + " size: " + result.size() + "\n\t" + result );
// remove all statements from namedModel1
tdb.removeStatement( namedModel1, john, owns, URI + "Porsche" );
tdb.removeStatement( namedModel1, john, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, mike, owns, URI + "BMW" );
tdb.removeStatement( namedModel1, bill, owns, URI + "Audi" );
tdb.removeStatement( namedModel1, bill, owns, URI + "BMW" );
result = tdb.getStatements( namedModel1, john, null, null);
System.out.println( namedModel1 + " size: " + result.size() + "\n\t" + result );
tdb.close();
}
}
5. Tips for developing with Jena and TDB
In your TDB storage folder you will find a file called nodes.dat, after initializing the TDB store. There you can check if your triples were inserted. Of course it gets complicated in a bigger graph, but it is kept mostly in plain text. Make use of the search function.
<Model_5FGerman_5FCars> +<http://tutorial-academy.com/2015/tdb#John> +<http://tutorial-academy.com/2015/tdb#owns> .<http://tutorial-academy.com/2015/tdb#Porsche> *<http://tutorial-academy.com/2015/tdb#BMW> +<http://tutorial-academy.com/2015/tdb#Mike> +<http://tutorial-academy.com/2015/tdb#Bill> +<http://tutorial-academy.com/2015/tdb#Audi> <Model_5FUS_5FCars> /<http://tutorial-academy.com/2015/tdb#Chrysler> +<http://tutorial-academy.com/2015/tdb#Ford> 0<http://tutorial-academy.com/2015/tdb#Chevrolet>
If you delete triples and wonder why they are still kept in the nodes.dat, but do not show up when reading via the API, this is related to the TDB architecture.
6. TDB architecture
TDB uses a node table which maps RDF nodes to 64 bit integer Ids and the other way around. The 64 bit integer Ids are used to create indexes. The indexes allow database scans which are required to process SPARQL queries.
Now if new data is added, the TDB store adds entries to the node table and the indexes. Removing data only affects the indexes. Therefore the node table will grow continuously even if data is removed.
You might think that is a terrible way to store data, but there are good reasons to do so:
- The integer Ids contain file offsets. In order to accelerate inserts, the node table is a squential file. The Id to node lookup is a fast file scan. If data gets deleted from the node table, you have to recalculate and rewrite all file offsets.
- Now if data is deleted, we do not know how often a node is used without scanning the complete database. Consequently we do not know which node table entry should be deleted. A workaround would add complexity and slow down and delete operations.
Anyways, in our experience the majority of operations on a triple store are inserts and reads. If you ever have the trouble of running out of disk space, you may read the whole affected graph and store it from scratch while deleting the original one. Of course depending on the size, this may as well slow down the triple store.
【转载】Apache Jena TDB CRUD operations的更多相关文章
- Jena TDB 102
1 Introduction TDB is a RDF storage of Jena. official guarantees and limitations TDB support full ra ...
- Jena TDB Assembler
TDB Assembler Assemblers (装配器) 是Jena中用于描述将要构建的对象(通常是模型和数据集 models & datasets)的一种通用机制.例如, Fuseki ...
- Apache jena SPARQL endpoint及推理
一.Apache Jena简介 Apache Jena(后文简称Jena),是一个开源的Java语义网框架(open source Semantic Web Framework for Java),用 ...
- 导入本体到Jena TDB数据库
本体的存储方法或称本体持久化,大致分为基于内存的方式.基于文件的方式.基于数据库的方式和专门的管理工具方式4种(傅柱等, 2013).其中,基于数据库的方式又有基于关系数据库.基于面向对象数据库.基于 ...
- Outline of Apache Jena Notes
1 description 这篇是语义网应用框架Apache Jena学习记录的索引. 初始动机见Apache Jena - A Bootstrap 2 Content 内容组织基本上遵循Jena首页 ...
- Jena TDB 101 Java API without Assembler
Update on 2015/05/12 ongoing tutorials site on https://github.com/zhoujiagen/semanticWebTutorialUsin ...
- MyBatis Tutorial – CRUD Operations and Mapping Relationships – Part 1---- reference
http://www.javacodegeeks.com/2012/11/mybatis-tutorial-crud-operations-and-mapping-relationships-part ...
- Apache Jena - A Bootstrap
前言 这篇文档属探究立项性质,作为语义网和本体建模工作的延续. 依照NoSQL Distilled上的考察方法,将Apache Jena作为图数据库的泛型考察. 内容 多种出版物上声明主要有四类N ...
- Jena TDB assembler syntax
1 introduction Assembler is a DSL of Jena to specify something to build, models and dataset, for exa ...
随机推荐
- postman 中 form-data、x-www-form-urlencoded、raw、binary的区别
区别 form-data: 就是http请求中的multipart/form-data,它会将表单的数据处理为一条消息,以标签为单元,用分隔符分开.既可以上传键值对,也可以上传文件.当上传的字段是文件 ...
- 洛谷4030(Codeplus11月月赛)可做题1
题目:https://www.luogu.org/problemnew/show/P4030 原来一个方阵巧妙的充要条件是该方阵的每个2*2子方阵都是巧妙的!!! 可以把每一行选的列视为一个排列,需要 ...
- mySQL教程 第1章 数据库设计
E-R设计 很多同学在学SQL语句时,觉得非常困难,那是因为你在学一个你根本不了解的数据库,数据库中的表不是你设计的,表与表之间的关系你不明白.因此在学SQL语句之前,先介绍一下数据库设计. 下面举例 ...
- 既做无线客户端又做无线ap、又可只存在一种模式
1. 1.1 打开 /barrier_breaker/package/base-files/files/etc/init.d 加入 disable_sta_mode_wifi_interfaces # ...
- [转]StarWind模拟iSCSI设备
StarWind模拟iSCSI设备 url: http://jimshu.blog.51cto.com/3171847/590412/ 标签:职场 iSCSI 休闲 StarWind 原创作品,允许 ...
- C++将整型数据转换成大端或小端存储顺序
大端和小端的概念参考之前博客: 大端/小端,高字节/低字节,高地址/低地址,移位运算 昨晚帮导师从指令中恢复图像的时候,导师要我转换成raw格式,也就是记录图像像素的二进制序列,然后反复强调让我注意大 ...
- php对象的实现
1.对象的数据结构非常简单 typedef struct _zend_object zend_object; struct _zend_object { zend_refcounted_h gc; / ...
- BASIC-7_蓝桥杯_特殊的数字
代码示例: #include <stdio.h>#define B(X) (X)*(X)*(X) int main(void){ int i = 0 ; int a = 0 , b = 0 ...
- [转]Outlook HTML渲染
转自:http://www.cnblogs.com/dolphinX/p/4081828.html 是不是很讨厌为Email代码兼容Outlook? 太遗憾了!虽然光都有尽头,但Outlook始终存在 ...
- img atl和a title
今天发现一个有趣的现象. <a href="#" title="a"><img src="xxx.jpg" alt=& ...