Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数。

count()、cycle()、repeat()

首先,我们看看itertools提供的几个“无限”迭代器:

>>> import itertools
>>> natuals = itertools.count(1)
>>> for n in natuals:
... print n
...
1
2
3
...

因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只能按Ctrl+C退出。

cycle()会把传入的一个序列无限重复下去:

>>> import itertools
>>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
>>> for c in cs:
... print c
...
'A'
'B'
'C'
'A'
'B'
'C'
...

同样停不下来。

repeat()负责把一个元素无限重复下去,不过如果提供第二个参数就可以限定重复次数:

>>> ns = itertools.repeat('A', 10)
>>> for n in ns:
... print n
...
打印10次'A'

无限序列只有在for迭代时才会无限地迭代下去,如果只是创建了一个迭代对象,它不会事先把无限个元素生成出来,事实上也不可能在内存中创建无限多个元素。

无限序列虽然可以无限迭代下去,但是通常我们会通过takewhile()等函数根据条件判断来截取出一个有限的序列:

>>> natuals = itertools.count(1)
>>> ns = itertools.takewhile(lambda x: x <= 10, natuals)
>>> for n in ns:
... print n
...
打印出1到10

itertools提供的几个迭代器操作函数更加有用:

chain()

chain()可以把一组迭代对象串联起来,形成一个更大的迭代器:

for c in itertools.chain('ABC', 'XYZ'):
print c
# 迭代效果:'A' 'B' 'C' 'X' 'Y' 'Z'

groupby()

groupby()把迭代器中相邻的重复元素挑出来放在一起:

>>> for key, group in itertools.groupby('AAABBBCCAAA'):
... print key, list(group) # 为什么这里要用list()函数呢?
...
A ['A', 'A', 'A']
B ['B', 'B', 'B']
C ['C', 'C']
A ['A', 'A', 'A']

实际上挑选规则是通过函数完成的,只要作用于函数的两个元素返回的值相等,这两个元素就被认为是在一组的,而函数返回值作为组的key。如果我们要忽略大小写分组,就可以让元素'A''a'都返回相同的key:

>>> for key, group in itertools.groupby('AaaBBbcCAAa', lambda c: c.upper()):
... print key, list(group)
...
A ['A', 'a', 'a']
B ['B', 'B', 'b']
C ['c', 'C']
A ['A', 'A', 'a']

imap()

imap()map()的区别在于,imap()可以作用于无穷序列,并且,如果两个序列的长度不一致,以短的那个为准。

>>> for x in itertools.imap(lambda x, y: x * y, [10, 20, 30], itertools.count(1)):
... print x
...
10
40
90

注意imap()返回一个迭代对象,而map()返回list。当你调用map()时,已经计算完毕:

>>> r = map(lambda x: x*x, [1, 2, 3])
>>> r # r已经计算出来了
[1, 4, 9]

当你调用imap()时,并没有进行任何计算:

>>> r = itertools.imap(lambda x: x*x, [1, 2, 3])
>>> r
<itertools.imap object at 0x103d3ff90>
# r只是一个迭代对象

必须用for循环对r进行迭代,才会在每次循环过程中计算出下一个元素:

>>> for x in r:
... print x
...
1
4
9

这说明imap()实现了“惰性计算”,也就是在需要获得结果的时候才计算。类似imap()这样能够实现惰性计算的函数就可以处理无限序列:

>>> r = itertools.imap(lambda x: x*x, itertools.count(1))
>>> for n in itertools.takewhile(lambda x: x<100, r):
... print n
...
结果是什么?

如果把imap()换成map()去处理无限序列会有什么结果?

>>> r = map(lambda x: x*x, itertools.count(1))
结果是什么?

ifilter()

不用多说了,ifilter()就是filter()的惰性实现。

小结

itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是迭代对象,只有用for循环迭代的时候才真正计算。

参考文献: 廖雪峰itertools模块

itertools模块(收藏)的更多相关文章

  1. itertools模块

    itertools模块中有很多函数,返回的是一个迭代器 参考: http://www.wklken.me/posts/2013/08/20/python-extra-itertools.html#_1

  2. 转:Python itertools模块

    itertools Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数. 首先,我们看看itertools提供的几个"无限"迭代器: >>& ...

  3. python, itertools模块

    通过itertools模块,可以用各种方式对数据进行循环操作 1, chain() from intertools import chain for i in chain([1,2,3], ('a', ...

  4. itertools模块速查

    学习itertools模块记住这张表就OK了 参考:http://docs.python.org/2/library/itertools.html#module-itertools Infinite ...

  5. Python中itertools模块

    itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数联合使用. ch ...

  6. Python:itertools模块

    itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数联合使用. ch ...

  7. Python学习笔记—itertools模块

    这篇是看wklken的<Python进阶-Itertools模块小结> 学习itertools模块的学习笔记 在看itertools中各函数的源代码时,刚开始还比较轻松,但后面看起来就比较 ...

  8. PYTHON-进阶-ITERTOOLS模块

    PYTHON-进阶-ITERTOOLS模块小结 这货很强大, 必须掌握 文档 链接 pymotw 链接 基本是基于文档的翻译和补充,相当于翻译了 itertools用于高效循环的迭代函数集合 组成 总 ...

  9. python笔记之itertools模块

    python笔记之itertools模块 itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生 ...

随机推荐

  1. VC++生成不同的随机数

    其用法是先调用srand函数,如 srand( (unsigned)time( NULL ) ) 这样可以使得每次产生的随机数序列不同.假如计算伪随机序列的初始数值(称为种子)相同,则计算出来的伪随机 ...

  2. RAC迁移至单机考虑几大因素

    数据库迁移几大因素 1. 停机时间 2. 源端,目标端 操作系统平台,版本,对应的数据库版本 3. 数据量 4. 外界因素,存储空间,网络等

  3. testmath

    $\Huge ans = \frac{ \sum\limits_{i=1}^{m}{ (x_i - \bar{x})^2 } }{m} \cdot m^2 \\$

  4. [Offer收割]编程练习赛15 B.分数调查[加权并查集]

    #1515 : 分数调查 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi的学校总共有N名学生,编号1-N.学校刚刚进行了一场全校的古诗文水平测验. 学校没有公布测 ...

  5. ELK系列二:Elasticsearch的架构原理和配置优化

    1.Elasticsearch的数据组织架构 1.1.Elasticsearch结构概念 集群(cluster):拥有相同cluster-name的elasticsearch结点的集合(每个结点其实就 ...

  6. 调用TerminateProcess是无法触发DLL_PROCESS_DETACH的

    当应用程序中调用TerminateProcess函数,对于在DllMain函数中处理DLL_PROCESS_DETACH的额外代码操作是无法被执行的.比如:释放资源.数据持久化等.

  7. STM8L外部中断 为何 死循环 寄存器操作

    STM8L 系列单片机是 ST公司推出的低功耗单片机,与STM8S系列相比功耗降低了很多,但内部结构也删减了很多,使用时一定要仔细阅读手册.  这是第一次使用STM8,实现功能不是很复杂就没想研究库函 ...

  8. MAC SVN 基本设置 终端命令

    extends:http://www.cnblogs.com/heiniuhaha/archive/2012/07/31/2616493.html 安装XCode后Mac OS X 系统已经内置了sv ...

  9. Listview多tab上滑悬浮

    extends:http://blog.163.com/xueshanhaizi@126/blog/static/37250245201410541721892/ 1:近期要做一个含有两个tab切换页 ...

  10. python3安装builtwith

    >>> import builtwith Traceback (most recent call last): File , in <module> File excep ...