eigen quick reference
参考: http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
// A simple quickref for Eigen. Add anything that's missing.
// Main author: Keir Mierle #include <Eigen/Dense> Matrix<double, , > A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, , Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, , , RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
double s; // Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) // A.resize(, ); // Runtime error if assertions are on.
B.resize(, ); // Runtime error if assertions are on.
A.resize(, ); // Ok; size didn't change.
B.resize(, ); // Ok; only dynamic cols changed. A << , , , // Initialize A. The elements can also be
, , , // matrices, which are stacked along cols
, , ; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(); // Fill A with all 10's. // Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = zeros(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
VectorXi::LinSpaced(((hi-low)/step)+, // low:step:hi
low,low+step*(size-)) // // Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(i+1:i+rows, :)
P.middleRows(i, rows) // P(i+1:i+rows, :)
P.bottomRows<rows>() // P(end-rows+1:end, :)
P.bottomRows(rows) // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end) // Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1]) // Views, transpose, etc;
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R') // Read-write
R.diagonal() // diag(R) // Read-write
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse() // rot90(R) // Read-write
R.rowwise().reverse() // fliplr(R)
R.colwise().reverse() // flipud(R)
R.replicate(i,j) // repmat(P,i,j) // All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s; // Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array(); // R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array(); // R = P ./ Q
R = P.array() + s.array(); // R = P + s
R = P.array() - s.array(); // R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q ); // (R < s ? P : Q)
R = (Q.array()==).select(P,R) // R(Q==0) = P(Q==0)
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P) // with: scalar func(const scalar &x); // Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2) // Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry> //// Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done // Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(,);
A += F; // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly) // Eigen can map existing memory into Eigen matrices.
float array[];
Vector3f::Map(array).fill(); // create a temporary Map over array and sets entries to 10
int data[] = {, , , };
Matrix2i mat2x2(data); // copies data into mat2x2
Matrix2i::Map(data) = *mat2x2; // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, , ) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time) // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV() // Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>
eigen quick reference的更多相关文章
- C++ QUICK REFERENCE
C++ string 用法详解 字符串分割(C++) C++ QUICK REFERENCE Matt Mahoney, mmahoney@cs.fit.edu DECLARATIONS enum ...
- Quick Reference Card Urls For Web Developer
C# C# Cheatsheet & Notes Coding Guidelines for C# 3.0, 4.0, 5.0 Core C# and .NET Quick Reference ...
- ASP.NET Web Pages (Razor) API Quick Reference
ASP.NET Web Pages (Razor) API Quick Reference By Tom FitzMacken|February 10, 2014 Print This page co ...
- MongoDB - The mongo Shell, mongo Shell Quick Reference
mongo Shell Command History You can retrieve previous commands issued in the mongo shell with the up ...
- The Pragmatic Programmer Quick Reference Guide
1.关心你的技艺 Care About Your Craft 如果不在乎能否漂亮地开发出软件,你又为何要耗费生命去开发软件呢? 2.思考!你的工作 Think! About Your Work 关掉自 ...
- [译]AMQP 0-9-1 Quick Reference : basic
Basic basic.ack(delivery-tag delivery-tag, bit multiple)Support: fullAcknowledge one or more message ...
- SQL Quick Reference From W3Schools
SQL Statement Syntax AND / OR SELECT column_name(s)FROM table_nameWHERE conditionAND|OR condition AL ...
- objective-c Quick Reference
- GPDB 5.x PSQL Quick Reference
General \copyright show PostgreSQL usage and distribution terms \g [FILE] or ; execute query (and se ...
随机推荐
- Linux(Ubuntu)下也能用搜狗输入法了!!!
Ubuntu原生的中文输入法是不是总有点别扭? 不用再别扭了. 告诉你一个好消息:Linux(Ubuntu)下也能用搜狗输入法了!!! 下载地址:http://pinyin.sogou.com/lin ...
- Word 2010 制作文档结构之页码从正文开始设置
一般技术性文档结构划分: 第一页(首页) 第二页(修改记录页/版本记录页) 第三页(目录) 第四页(正文) 需求: 页脚编码 从正文(即第四页)开始,而不是从首页开始,那么该如何实现? 前提准备: 输 ...
- Elasticsearch学习之深入聚合分析三---案例实战
1. 统计指定品牌下每个颜色的销量 任何的聚合,都必须在搜索出来的结果数据中进行,搜索结果,就是聚合分析操作的scope GET /tvs/sales/_search { , "query& ...
- nginx(一)----ubuntu14.04下安装nginx
/** * lihaibo * 文章内容都是根据自己工作情况实践得出. *如有错误,请指正 *转载请注明出处 */ 此文章中用到的软件下载地址: 链接: http://pan.baidu.com/s/ ...
- Openstack的网卡设置
本博客已经添加"打赏"功能,"打赏"位置位于右边栏红色框中,感谢您赞助的咖啡. 最开始接触Openstack,这块是比较头疼的,不同的文档,设置都会有所差异,并 ...
- 2015.7.12js-11(DOM基础)
1.childNodes,获取子节点,本身就是一个数组,可以通过下标childNodes[i]来获取某个子节点. alert(obj.childNodes.length); //高级浏览器会有空白节点 ...
- Android.mk 用法介绍
一个Android.mk file用来向编译系统描述你的源代码.具体来说:该文件是GNU Makefile的一小部分,会被编译系统解析一次或多次.你可以在每一个Android.mk file中定义一个 ...
- 为Gem 添加环境设定
如果在测试环境中 gem "rspec", :group => :test 当多个gem的时候 group :test do gem "webrat" g ...
- 【CF860E】Arkady and a Nobody-men 长链剖分
[CF860E]Arkady and a Nobody-men 题意:给你一棵n个点的有根树.如果b是a的祖先,定义$r(a,b)$为b的子树中深度小于等于a的深度的点的个数(包括a).定义$z(a) ...
- [工具] multidesk
MultiDesk 是一个选项卡(TAB标签)方式的远程桌面连接 (Terminal Services Client). http://www.hoowi.com/multidesk/index_ch ...