参考: http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

// A simple quickref for Eigen. Add anything that's missing.
// Main author: Keir Mierle #include <Eigen/Dense> Matrix<double, , > A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, , Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, , , RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
VectorXd v; // Dynamic column vector of doubles
double s; // Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C,1) // number of rows
C.cols() // size(C,2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) // A.resize(, ); // Runtime error if assertions are on.
B.resize(, ); // Runtime error if assertions are on.
A.resize(, ); // Ok; size didn't change.
B.resize(, ); // Ok; only dynamic cols changed. A << , , , // Initialize A. The elements can also be
, , , // matrices, which are stacked along cols
, , ; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(); // Fill A with all 10's. // Eigen // Matlab
MatrixXd::Identity(rows,cols) // eye(rows,cols)
C.setIdentity(rows,cols) // C = eye(rows,cols)
MatrixXd::Zero(rows,cols) // zeros(rows,cols)
C.setZero(rows,cols) // C = zeros(rows,cols)
MatrixXd::Ones(rows,cols) // ones(rows,cols)
C.setOnes(rows,cols) // C = ones(rows,cols)
MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
VectorXi::LinSpaced(((hi-low)/step)+, // low:step:hi
low,low+step*(size-)) // // Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.head(n) // x(1:n)
x.head<n>() // x(1:n)
x.tail(n) // x(end - n + 1: end)
x.tail<n>() // x(end - n + 1: end)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.row(i) // P(i+1, :)
P.col(j) // P(:, j+1)
P.leftCols<cols>() // P(:, 1:cols)
P.leftCols(cols) // P(:, 1:cols)
P.middleCols<cols>(j) // P(:, j+1:j+cols)
P.middleCols(j, cols) // P(:, j+1:j+cols)
P.rightCols<cols>() // P(:, end-cols+1:end)
P.rightCols(cols) // P(:, end-cols+1:end)
P.topRows<rows>() // P(1:rows, :)
P.topRows(rows) // P(1:rows, :)
P.middleRows<rows>(i) // P(i+1:i+rows, :)
P.middleRows(i, rows) // P(i+1:i+rows, :)
P.bottomRows<rows>() // P(end-rows+1:end, :)
P.bottomRows(rows) // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end) // Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1]) // Views, transpose, etc;
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R') // Read-write
R.diagonal() // diag(R) // Read-write
x.asDiagonal() // diag(x)
R.transpose().colwise().reverse() // rot90(R) // Read-write
R.rowwise().reverse() // fliplr(R)
R.colwise().reverse() // flipud(R)
R.replicate(i,j) // repmat(P,i,j) // All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s; // Vectorized operations on each element independently
// Eigen // Matlab
R = P.cwiseProduct(Q); // R = P .* Q
R = P.array() * s.array(); // R = P .* s
R = P.cwiseQuotient(Q); // R = P ./ Q
R = P.array() / Q.array(); // R = P ./ Q
R = P.array() + s.array(); // R = P + s
R = P.array() - s.array(); // R = P - s
R.array() += s; // R = R + s
R.array() -= s; // R = R - s
R.array() < Q.array(); // R < Q
R.array() <= Q.array(); // R <= Q
R.cwiseInverse(); // 1 ./ P
R.array().inverse(); // 1 ./ P
R.array().sin() // sin(P)
R.array().cos() // cos(P)
R.array().pow(s) // P .^ s
R.array().square() // P .^ 2
R.array().cube() // P .^ 3
R.cwiseSqrt() // sqrt(P)
R.array().sqrt() // sqrt(P)
R.array().exp() // exp(P)
R.array().log() // log(P)
R.cwiseMax(P) // max(R, P)
R.array().max(P.array()) // max(R, P)
R.cwiseMin(P) // min(R, P)
R.array().min(P.array()) // min(R, P)
R.cwiseAbs() // abs(P)
R.array().abs() // abs(P)
R.cwiseAbs2() // abs(P.^2)
R.array().abs2() // abs(P.^2)
(R.array() < s).select(P,Q ); // (R < s ? P : Q)
R = (Q.array()==).select(P,R) // R(Q==0) = P(Q==0)
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P) // with: scalar func(const scalar &x); // Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum() // sum(R(:))
R.colwise().sum() // sum(R)
R.rowwise().sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise().prod() // prod(R)
R.rowwise().prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2) // Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry> //// Type conversion
// Eigen // Matlab
A.cast<double>(); // double(A)
A.cast<float>(); // single(A)
A.cast<int>(); // int32(A)
A.real(); // real(A)
A.imag(); // imag(A)
// if the original type equals destination type, no work is done // Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(,);
A += F; // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly) // Eigen can map existing memory into Eigen matrices.
float array[];
Vector3f::Map(array).fill(); // create a temporary Map over array and sets entries to 10
int data[] = {, , , };
Matrix2i mat2x2(data); // copies data into mat2x2
Matrix2i::Map(data) = *mat2x2; // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, , ) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time) // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV() // Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

eigen quick reference的更多相关文章

  1. C++ QUICK REFERENCE

    C++ string 用法详解 字符串分割(C++)  C++ QUICK REFERENCE Matt Mahoney, mmahoney@cs.fit.edu DECLARATIONS enum ...

  2. Quick Reference Card Urls For Web Developer

    C# C# Cheatsheet & Notes Coding Guidelines for C# 3.0, 4.0, 5.0 Core C# and .NET Quick Reference ...

  3. ASP.NET Web Pages (Razor) API Quick Reference

    ASP.NET Web Pages (Razor) API Quick Reference By Tom FitzMacken|February 10, 2014 Print This page co ...

  4. MongoDB - The mongo Shell, mongo Shell Quick Reference

    mongo Shell Command History You can retrieve previous commands issued in the mongo shell with the up ...

  5. The Pragmatic Programmer Quick Reference Guide

    1.关心你的技艺 Care About Your Craft 如果不在乎能否漂亮地开发出软件,你又为何要耗费生命去开发软件呢? 2.思考!你的工作 Think! About Your Work 关掉自 ...

  6. [译]AMQP 0-9-1 Quick Reference : basic

    Basic basic.ack(delivery-tag delivery-tag, bit multiple)Support: fullAcknowledge one or more message ...

  7. SQL Quick Reference From W3Schools

    SQL Statement Syntax AND / OR SELECT column_name(s)FROM table_nameWHERE conditionAND|OR condition AL ...

  8. objective-c Quick Reference

  9. GPDB 5.x PSQL Quick Reference

    General \copyright show PostgreSQL usage and distribution terms \g [FILE] or ; execute query (and se ...

随机推荐

  1. vue - 父组件数据变化控制子组件类名切换

    先说当时的思路和实现核心是父子组件传值和v-bind指令动态绑定class实现 1. 父组件引用.注册.调用子组件script中引用 import child from '../components/ ...

  2. laravel + php cgi + nginx在windows平台下的配置

    1.d:\xampp\php\php-cgi.exe -b 127.0.0.1:9000 -c d:\xampp\php\php.ini 2.nginx conf配置如下: #user nobody; ...

  3. key是数字的对象集合

    整理如下: let data = {3: '影视', 4: '音乐', 5: '广场舞', 6: '游戏', 7: '综艺', 8: '动漫', 9: '翻唱', 10: '生活', 11: '美食' ...

  4. Laravel 5.1 中如何使用模型观察者

    有时候我们需要在一个表更改后,触发某个事件,最常见的比如,首页推荐商品 1 更改了,需要清空所有首页商品缓存. 首先我们需要在建立一个观察者类,比如 App\Model\Observers\Proje ...

  5. Android图表开发——AChartEngine

    Android图表控件的开发 曾经开发过一个小程序,在Android电视机上面开发一个APP,用于显示一些统计图表的信息.最后找来找去基于Android Native开发有AChartEngine现成 ...

  6. 无向连通图求割边(桥)hdu4738,hdu3849

    点击打开链接 题目链接:   hdu 4738 题目大意:   曹操有N个岛,这些岛用M座桥连接起来 每座桥有士兵把守(也可能没有) 周瑜想让这N个岛不连通,但只能炸掉一座桥 并且炸掉一座桥需要派出不 ...

  7. AppScan扫描建议 问题集

    1.1        AppScan扫描建议 若干问题的补救方法在于对用户输入进行清理. 通过验证用户输入未包含危险字符,便可能防止恶意的用户导致应用程序执行计划外的任务,例如:启动任意 SQL 查询 ...

  8. NGINX域名跳转案列

    1.不同域名不同路径跳转 nginx实现a.com/teacher域名跳转到b.com/student 若想实现上面题目的跳转,目前鄙人知道两种方式: 1.return 2.proxy_pass 具体 ...

  9. 企业案例(一):由于mysql sleep线程过多小故障

    1.什么是长连接 长连接是相对于通常的短连接而说的,也就是长时间保持客户端与服务端的连接状态. 通常的短连接操作步骤是: 连接->数据传输->关闭连接: 而长连接通常就是: 连接-> ...

  10. iOS UIScrollView 3种分页方法,间隔实现

    基础知识参考 http://tech.glowing.com/cn/practice-in-uiscrollview/ https://stackoverflow.com/questions/9367 ...