借助heap数据结构实现。

以小顶heap为例(说明值越小优先级越高,如距离),代码如下:

 //  PriorityQueue.java
// Java Spatial Index Library
// Copyright (C) 2008 aled@users.sourceforge.net
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA package buaa.act.ucar.moi; import java.io.Serializable; import gnu.trove.list.array.TFloatArrayList;
import gnu.trove.list.array.TIntArrayList; /**
* <p>
* Priority Queue that stores values as ints and priorities as floats. Uses a
* Heap to sort the priorities; the values are sorted "in step" with the
* priorities.
* </p>
* <p>
* A Heap is simply an array that is kept semi sorted; in particular if the
* elements of the array are arranged in a tree structure; ie
* </p>
*
* <pre>
* 00
* / \
* 01 02
* / \ / \
* 03 04 05 06
* /\ /\ /\ /\
* 07 08 09 10 11 12 13 14
* </pre>
* <p>
* then each parent is kept sorted with respect to it's immediate children. E.g.
* 00 < 01, 00 < 02, 02 < 05, 02 < 06
* </p>
* <p>
* This means that the array appears to be sorted, as long as we only ever look
* at element 0.
* </p>
* <p>
* Inserting new elements is much faster than if the entire array was kept
* sorted; a new element is appended to the array, and then recursively swapped
* with each parent to maintain the "parent is sorted w.r.t it's children"
* property.
* </p>
* <p>
* To return the "next" value it is necessary to remove the root element. The
* last element in the array is placed in the root of the tree, and is
* recursively swapped with one of it's children until the "parent is sorted
* w.r.t it's children" property is restored.
* </p>
* <p>
* Random access is slow (eg for deleting a particular value), and is not
* implemented here - if this functionality is required, then a heap probably
* isn't the right data structure.
* </p>
*/
public class PriorityQueue implements Serializable {
private static final long serialVersionUID = -5653506138757217673L;
public static final boolean SORT_ORDER_ASCENDING = true;
public static final boolean SORT_ORDER_DESCENDING = false; private TIntArrayList values = null;
private TFloatArrayList priorities = null;
private boolean sortOrder = SORT_ORDER_ASCENDING; private static boolean INTERNAL_CONSISTENCY_CHECKING = false; public PriorityQueue(boolean sortOrder) {
this(sortOrder, 10);
} public PriorityQueue(boolean sortOrder, int initialCapacity) {
this.sortOrder = sortOrder;
values = new TIntArrayList(initialCapacity);
priorities = new TFloatArrayList(initialCapacity);
} /**
* @param p1
* @param p2
* @return true if p1 has an earlier sort order than p2.
*/
private boolean sortsEarlierThan(float p1, float p2) {
if (sortOrder == SORT_ORDER_ASCENDING) {
return p1 < p2;
}
return p2 < p1;
} // to insert a value, append it to the arrays, then
// reheapify by promoting it to the correct place.
public void insert(int value, float priority) {
values.add(value);
priorities.add(priority); promote(values.size() - 1, value, priority);
} private void promote(int index, int value, float priority) {
// Consider the index to be a "hole"; i.e. don't swap priorities/values
// when moving up the tree, simply copy the parent into the hole and
// then consider the parent to be the hole.
// Finally, copy the value/priority into the hole.
while (index > 0) {
int parentIndex = (index - 1) / 2;
float parentPriority = priorities.get(parentIndex); if (sortsEarlierThan(parentPriority, priority)) {
break;
} // copy the parent entry into the current index.
values.set(index, values.get(parentIndex));
priorities.set(index, parentPriority);
index = parentIndex;
} values.set(index, value);
priorities.set(index, priority); if (INTERNAL_CONSISTENCY_CHECKING) {
check();
}
} public int size() {
return values.size();
} public void clear() {
values.clear();
priorities.clear();
} public void reset() {
values.reset();
priorities.reset();
} public int getValue() {
return values.get(0);
} public float getPriority() {
return priorities.get(0);
} private void demote(int index, int value, float priority) {
int childIndex = (index * 2) + 1; // left child while (childIndex < values.size()) {
float childPriority = priorities.get(childIndex); if (childIndex + 1 < values.size()) {
float rightPriority = priorities.get(childIndex + 1);
if (sortsEarlierThan(rightPriority, childPriority)) {
childPriority = rightPriority;
childIndex++; // right child
}
} if (sortsEarlierThan(childPriority, priority)) {
priorities.set(index, childPriority);
values.set(index, values.get(childIndex));
index = childIndex;
childIndex = (index * 2) + 1;
} else {
break;
}
} values.set(index, value);
priorities.set(index, priority);
} // get the value with the lowest priority
// creates a "hole" at the root of the tree.
// The algorithm swaps the hole with the appropriate child, until
// the last entry will fit correctly into the hole (ie is lower
// priority than its children)
public int pop() {
int ret = values.get(0); // record the value/priority of the last entry
int lastIndex = values.size() - 1;
int tempValue = values.get(lastIndex);
float tempPriority = priorities.get(lastIndex); values.removeAt(lastIndex);
priorities.removeAt(lastIndex); if (lastIndex > 0) {
demote(0, tempValue, tempPriority);
} if (INTERNAL_CONSISTENCY_CHECKING) {
check();
} return ret;
} public void setSortOrder(boolean sortOrder) {
if (this.sortOrder != sortOrder) {
this.sortOrder = sortOrder;
// reheapify the arrays
for (int i = (values.size() / 2) - 1; i >= 0; i--) {
demote(i, values.get(i), priorities.get(i));
}
}
if (INTERNAL_CONSISTENCY_CHECKING) {
check();
}
} private void check() {
// for each entry, check that the child entries have a lower or equal
// priority
int lastIndex = values.size() - 1; for (int i = 0; i < values.size() / 2; i++) {
float currentPriority = priorities.get(i); int leftIndex = (i * 2) + 1;
if (leftIndex <= lastIndex) {
float leftPriority = priorities.get(leftIndex);
if (sortsEarlierThan(leftPriority, currentPriority)) {
System.err.println("Internal error in PriorityQueue");
}
} int rightIndex = (i * 2) + 2;
if (rightIndex <= lastIndex) {
float rightPriority = priorities.get(rightIndex);
if (sortsEarlierThan(rightPriority, currentPriority)) {
System.err.println("Internal error in PriorityQueue");
}
}
}
}
}

PriorityQueue的Java实现的更多相关文章

  1. Java中的队列Queue,优先级队列PriorityQueue

    队列Queue 在java5中新增加了java.util.Queue接口,用以支持队列的常见操作.该接口扩展了java.util.Collection接口. Queue使用时要尽量避免Collecti ...

  2. java中PriorityQueue优先级队列使用方法

    优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...

  3. 《转》JAVA中PriorityQueue优先级队列使用方法

    该文章转自:http://blog.csdn.net/hiphopmattshi/article/details/7334487 优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最 ...

  4. 【转】java中PriorityQueue优先级队列使用方法

    优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...

  5. Java Queue之PriorityQueue

    PriorityQueue位于Java util包中,观其名字前半部分的单词Priority是优先的意思,实际上这个队列就是具有“优先级”.既然具有优先级的特性,那么就得有个前后排序的“规则”.所以其 ...

  6. # Java Queue系列之PriorityQueue

    在上一篇中我用一张图来梳理了一下Java中的各种Queue之间的关系.这里介绍下PriorityQueue.PriorityQueue位于Java util包中,观其名字前半部分的单词Priority ...

  7. java 中PriorityQueue优先级队列使用方法

    1.前言 优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果想实现按照自己的意愿进行优 ...

  8. 【Java源码】集合类-优先队列PriorityQueue

    一.类继承关系 public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serial ...

  9. Java找N个数中最小的K个数,PriorityQueue和Arrays.sort()两种实现方法

    最近看到了 java.util.PriorityQueue.刚看到还没什么感觉,今天突然发现他可以用来找N个数中最小的K个数. 假设有如下 10 个整数. 5 2 0 1 4 8 6 9 7 3 怎么 ...

随机推荐

  1. [转载]java日志框架log4j详细配置及与slf4j联合使用教程

    一.log4j基本用法 首先,配置log4j的jar,maven工程配置以下依赖,非maven工程从maven仓库下载jar添加到“build path” 1 2 3 4 5 <dependen ...

  2. 使用Karma、Mocha实现vue单元测试

    Karma Karma是一个基于Node.js的JavaScript测试执行过程管理工具(Test Runner).该工具在Vue中的主要作用是将项目运行在各种主流Web浏览器进行测试.换句话说,它是 ...

  3. haproxy-1.7.7 基于域名的调度配置

    配置样列: [root@c01 haproxy-1.7.7]# cat conf/haproxy.cfg global log 127.0.0.1 local0 info #[err warning ...

  4. Nginx配置优化参考

    Nginx配置优化参考                                                                                          ...

  5. C++操作符的优先级 及其记忆方法

    优先级 操作符 描述 例子 结合性 1 ()[]->.::++-- 调节优先级的括号操作符数组下标访问操作符通过指向对象的指针访问成员的操作符通过对象本身访问成员的操作符作用域操作符后置自增操作 ...

  6. 每日英语:Why Rate Your Marriage? A Numerical Score Can Help Couples Talk About Problems

    When marriage therapist Sharon Gilchrest O'Neill met with new clients recently, she asked them why t ...

  7. (原) windows下autohotkey的快捷键脚本编写

    autohotkey 脚本很强大,可以接受传参.能各种程序逻辑控制.还可以把脚本转换成独立执行的EXE.(安装完后程序目录下有个小程序:Convert .ahk to .exe,直接UI上转换.)总之 ...

  8. [DIOCP3-IocpTask说明书]基于IOCP引擎的多线程任务的投递和回调处理单元

    [说明] IocpTask是基于Iocp引擎的多线程任务投递和处理单元,可以方便的把任务进行投递到IOCP线程进行统一调度和处理,是模仿QDAC-QWorker的处理方式,支持D7以上的版本. [使用 ...

  9. Kudu:支持快速分析的新型Hadoop存储系统

    Kudu 是 Cloudera 开源的新型列式存储系统,是 Apache Hadoop 生态圈的新成员之一( incubating ),专门为了对快速变化的数据进行快速的分析,填补了以往 Hadoop ...

  10. 分布式系统唯一ID生成方案汇总【转】

    转自:http://www.cnblogs.com/haoxinyue/p/5208136.html 系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结.生成ID的方法有很 ...