题意:在一条路上有 n 个站点,并给定了每个站点的坐标,然后想要在 k 个站点旁边分别各建一个补给站,求所有站点到最近的补给站的距离和的最小值。

是的,毫无疑问,显然是 DP 问题,但是这题怎么递推还是需要考虑的,我一开始是以 dp [ k ] [ i ] 表示设好第 k 个补给站并讨论到第 i 个站点时的最短路径,即第 k 个补给站不一定是设在第 i 个站点的,但是敲了一半我就发现这样做非常麻烦,因为首先我必须记录下每次 dp 时最后一个站点的位置,其次我还要对于每个考虑到的站点分析最后一个补给站设在之前(即从 dp [ k ] [ i - 1 ]转移)或在第 i 站(即从 dp [ k - 1 ] [ i - 1 ]转移并修改中间项的最小距离),所以很快我就意识到我不能这么做,粗看了题解之后我才发现,做法其实应该是我一开始 pass 掉的 dp [ k ] [ i - 1 ] 表示在第 i 站设第 k 个补给站的最短路程,这样只要对于设置最后一个补给站的 dp 值加上剩下没有加的距离,就是最终结果。

就这样,我基本理解了题目的做法,并且敲了一遍,然后就习惯性地 WA 了,昂,基本也属习惯,虽然我也一直在努力纠正,就是在很多我很习惯的模型上我一般不会敲错,但是这些新想的,专对题目的 dp 我却总是会出错,主要就是各种细节,特别是杭电对于各种细节坑非常扣。

这题一点一点比对,才发现,坐标是有负数的,所以最好就是一开始把所有的坐标都弄成非负数,然后 dp 过程中也有各种小错误,一题大概当时做了一天吧,还是很心塞的。

 #include<stdio.h>
#include<string.h>
#define min(a,b) a<b?a:b
#define INF 0xFFFFFFF int a[],dp[][],w[][]; int main(){
int n,m,c=;
while(scanf("%d%d",&n,&m)!=EOF&&n!=||m!=){
int i,j,k,tmp,ans=INF;
for(i=;i<=n;i++){
scanf("%d",&a[i]);
}
memset(w,,sizeof(w));
for(i=n;i>=;i--){
a[i]=a[i]-a[]+;
}
for(i=;i<=n;i++){
for(j=i;j<=n;j++){
tmp=;
for(k=i;k<=j;k++){ tmp+=min(a[k]-a[i],a[j]-a[k]);
}
w[i][j]=tmp;
}
}
/*
printf("\nw:\n");
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
printf("%3d",w[i][j]);
}
printf("\n");
}
printf("\n");
*/
// printf("min=%d\n",min(a[3]-a[2],a[2]-a[1])); memset(dp,,sizeof(dp));
for(i=;i<=n;i++){
for(j=;j<=i;j++){
dp[][i]+=a[i]-a[j];
}
}
for(j=;j<=m;j++){
for(i=j;i<=n;i++){
dp[j][i]=INF;
for(k=j-;k<=i-;k++){
dp[j][i]=min(dp[j][i],dp[j-][k]+w[k][i]);
/*
if(t==0){
printf("i=%d\nj=%d\nk=%d\ndp[j-1][k]=%d\nw(k,i)=%d\n",i,j,k,dp[j-1][k],w[k][i]);
}
*/ } }
}
/*
printf("\n");
for(j=1;j<=m;j++){
for(i=1;i<=n;i++){
printf("%3d",dp[j][i]);
}
printf("\n");
}
printf("\n");
*/
for(i=m;i<=n;i++){
tmp=dp[m][i];
// printf("%d\n",tmp);
for(j=i+;j<=n;j++){
tmp+=a[j]-a[i];
}
ans=min(ans,tmp);
}
// printf("\n");
printf("Chain %d\nTotal distance sum = %d\n\n",++c,ans);
}
return ;
}

hdu1227 dp的更多相关文章

  1. poj1160 dp

    //Accepted 564 KB 63 ms //和hdu1227一样 //dp[i][j]=min(dp[i][j],dp[k][j-1]+cost[k+1][i]) //初始化条件,dp[0][ ...

  2. DP总结 ——QPH

    常见优化 单调队列 形式 dp[i]=min{f(k)} dp[i]=max{f(k)} 要求 f(k)是关于k的函数 k的范围和i有关 转移方法 维护一个单调递增(减)的队列,可以在两头弹出元素,一 ...

  3. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  4. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  5. AEAI DP V3.7.0 发布,开源综合应用开发平台

    1  升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...

  6. AEAI DP V3.6.0 升级说明,开源综合应用开发平台

    AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...

  7. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  8. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

随机推荐

  1. rem的计算

    (function (doc, win) { console.log("dpr:"+win.devicePixelRatio); var docEle = doc.document ...

  2. .net GUI框架

    十大开源的.NET用户界面框架 让GUI设计不再犯难 选择一款合适的GUI框架是.NET开发中比较重要但又很棘手的问题,因为用户界面相当于一款应用的"门面",直接面向用户.好的UI ...

  3. 20170708xlVBA添加新产品修改公式

    Sub ControlInsertProduct() Dim Wb As Workbook Dim OneSht As Worksheet Dim Arr As Variant Dim i As Lo ...

  4. Connecting Vertices CodeForces - 888F (图论,计数)

    链接 大意: 给定邻接表表示两点是否可以连接, 要求将图连成树, 且边不相交的方案数 n范围比较小, 可以直接区间dp $f[l][r]$表示答案, $g[l][r]$表示区间[l,r]全部连通且l, ...

  5. nyoj311(完全背包变形)

    完全背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是 ...

  6. UVA-1626 Brackets sequence (简单区间DP)

    题目大意:给一个有小括号和中括号组成的序列,满足题中的三个条件时,是合法的.不满足时是不合法的,问将一个不合法的序列最少添加几个括号可以使之变成合法的.输出最短合法序列. 题目分析:这是<入门经 ...

  7. iframe刷新父页面

    iframe页面是内嵌到父页面的,当点击iframe页面的服务器控件时,默认只刷新iframe页面,父页面是不会刷新的.若想刷新父页面,可以使用js来实现,如 1. parent.location.r ...

  8. 获取Oracle数据库awr报告方法

    --登录数据库  sqlplus username/passwd; --运行生成AWR报告脚本  SQL> @?/rdbms/admin/awrrpt.sql; --输入要生成报告的格式:htm ...

  9. css div居中

    div中没有text-align和vehicle-align这两个属性,所在在css中设置这两个值没有作用 div 水平居中 设置左右边距有auto div{ margin: 0 auto; } 垂直 ...

  10. ArrayList与List<T>笔记

    ArrayList与List<T>笔记 ArrayList是在System.Collections命名空间的一个类, 通过Add的方法添加一个项, 当进到这个类的元数据时, 可以看到这个方 ...