LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】
思路
我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的
那就可以用Min-Max来容斥一下
设\(g_{s}\)是从x到s中任意一个点的最小步数
设\(f_{s}\)是从x到s中任意一个点的最大步数
然后就可以的得到
\(f_{s}=\sum_{t\subseteq s}(-1)^{|t|+1}g_t\)
然后考虑g怎么求
设\(p_i\)是i点到任意一个子集中的点的最小步数
有\(p_u=\frac{1}{du_u}(1+p_{fa_u})+\frac{1}{du_u}\sum_{v\in child_u}(p_v+1)\)
然后我们令\(p_u=a_up_{fa_u}+b_u\)
很显然有\(p_u=\frac{1}{du_u}\sum(a_vf_u+b_v+1)+\frac{1}{du_u}(p_{fa_u})\)
然后移项可以得到\(a_u=\frac{1}{du_u-\sum a_v},b_u=\frac{\sum(b_v+1)+1}{du_u-\sum a_v}\)
然后因为x是根没有父亲,所以\(g_{s}=(bitcnt(s) \& 1)?b_u:-b_u\)
然后就可以用子集前缀和进行累加了
最后直接输出答案就可以了
#include <bits/stdc++.h>
using namespace std;
const int Mod = 998244353;
const int N = 20;
int n, m, x;
int a[N], b[N], du[N];
int f[1 << N];
vector<int> g[N];
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
function<int(int a, int b)> add = [&](int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
};
function<int(int a, int b)> sub = [&](int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
};
function<int(int a, int b)> mul = [&](int a, int b) {
return (long long) a * b % Mod;
};
function<int(int a, int b)> fast_pow = [&](int a, int b) {
int res = 1;
for (; b; b >>= 1, a = mul(a, a))
if (b & 1) res = mul(res, a);
return res;
};
function<int(int a)> bitcnt = [&](int a) {
int res = 0;
for (; a; a >>= 1)
if (a & 1) ++res;
return res;
};
function<void(int u, int fa, int s)> dfs = [&](int u, int fa, int s) {
if ((s >> (u - 1)) & 1) return;
a[u] = du[u], b[u] = (u == x) ? 0 : 1; // x不用向fa走的1
for (auto v : g[u]) {
if (v == fa) continue;
dfs(v, u, s);
a[u] = sub(a[u], a[v]);
b[u] = add(b[u], b[v] + 1);
}
a[u] = fast_pow(a[u], Mod - 2);
b[u] = mul(b[u], a[u]);
};
scanf("%d %d %d", &n, &m, &x);
for (int i = 1; i < n; i++) {
int u, v;
scanf("%d %d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
++du[u], ++du[v];
}
int up = (1 << n) - 1;
for (int s = 1; s <= up; s++) {
for (int i = 1; i <= n; i++)
a[i] = b[i] = 0;
dfs(x, 0, s);
f[s] = (bitcnt(s) & 1) ? b[x] : (Mod - b[x]) % Mod;
}
f[0] = 0;
for (int i = 1; i <= n; i++) { // 这个循环在外面
for (int s = 1; s <= up; s++) {
if ((s >> (i - 1)) & 1) {
f[s] = add(f[s], f[s ^ (1 << (i - 1))]);
}
}
}
while (m--) {
int num, cur, s = 0;
scanf("%d", &num);
while (num--) {
scanf("%d", &cur);
s |= 1 << (cur - 1);
}
printf("%d\n", f[s]);
}
return 0;
}
LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】的更多相关文章
- loj2542 「PKUWC2018」随机游走 【树形dp + 状压dp + 数学】
题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方 ...
- LOJ2542. 「PKUWC2018」随机游走
LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...
- loj2542「PKUWC2018」随机游走
题目描述 给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS ...
- loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...
- loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)
传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...
- LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】
LINK 思路 首先在加入几个点之后所有的点都只有三种状态 一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过 然后前两个状态是可以压缩起来的 因为我们只需要记录下当前独立集大小和是否被访问 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- 「PKUWC2018」随机游走(min-max容斥+FWT)
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...
- LOJ #2542「PKUWC2018」随机游走
$ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...
随机推荐
- 《A_Pancers团队》———团队项目原型设计与开发
一.实验目的与要求 (1)掌握软件原型开发技术: (2)学习使用软件原型开发工具:本实验中使用墨刀 二.实验内容与步骤 任务1:针对实验六团队项目选题,采用适当的原型开发工具设计团队项目原型: 任务2 ...
- Spring AMQP 源码分析 01 - Impatient
### 准备 ## 目标 了解 Spring AMQP 核心代码 ## 前置知识 RabbitMQ 入门 ## 相关资源 Quick Tour for the impatient:&l ...
- jsonSchema
可参考http://www.cnblogs.com/chenmo-xpw/p/5818773.html 我的理解 jsonSchema最大的用途是去定义和校验json数据,相当于一种json数据的一种 ...
- 链表排序 Sort List
2018-08-11 23:50:30 问题描述: 问题求解: 解法一.归并排序 public ListNode sortList(ListNode head) { if (head == null ...
- Prefix Product Sequence CodeForces - 487C (数论,构造)
大意: 构造一个[1,2,...n]的排列, 使得前缀积模n为[0,1,...,n-1]的排列 这种构造都好巧妙啊, 大概翻一下官方题解好了 对于所有>=6的合数$n$, 有$(n-1)! \e ...
- ubuntu svn二进制文件
1. 查找2:04时间的日志文件和position. Ps:这里假设我找到的是 mysql-bin.000065 位置开始为1356. 2 复制最近的几个日志文件,从mysql-bin.000065 ...
- nyoj-677-最大流最小割
677-碟战 内存限制:64MB 时间限制:2000ms 特判: No通过数:2 提交数:2 难度:4 题目描述: 知己知彼,百战不殆!在战争中如果被敌人掌握了自己的机密,失败是必然的.K国在一场战争 ...
- dp练习(10)——拦截导弹
1044 拦截导弹 1999年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Descripti ...
- 决策树ID3算法实现
决策树的ID3算法基于信息增益来选择最优特征,于是自己实现了一把,直接上代码. """ CreateTime : 2019/3/3 22:19 Author : X Fi ...
- SpringBoot 之Spring Boot Starter依赖包及作用
Spring Boot 之Spring Boot Starter依赖包及作用 spring-boot-starter 这是Spring Boot的核心启动器,包含了自动配置.日志和YAML. spri ...