这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题。

有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才能正确做到?

这个问题涉及到数据挖掘、文本处理、信息检索等很多计算机前沿领域,但是出乎意料的是,有一个非常简单的经典算法,可以给出令人相当满意的结果。它简单到都不需要高等数学,普通人只用10分钟就可以理解,这就是我今天想要介绍的TF-IDF算法。

让我们从一个实例开始讲起。假定现在有一篇长文《中国的蜜蜂养殖》,我们准备用计算机提取它的关键词。

一个容易想到的思路,就是找到出现次数最多的词。如果某个词很重要,它应该在这篇文章中多次出现。于是,我们进行"词频"(Term Frequency,缩写为TF)统计。

结果你肯定猜到了,出现次数最多的词是----"的"、"是"、"在"----这一类最常用的词。它们叫做"停用词"(stop words),表示对找到结果毫无帮助、必须过滤掉的词。

假设我们把它们都过滤掉了,只考虑剩下的有实际意义的词。这样又会遇到了另一个问题,我们可能发现"中国"、"蜜蜂"、"养殖"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?

显然不是这样。因为"中国"是很常见的词,相对而言,"蜜蜂"和"养殖"不那么常见。如果这三个词在一篇文章的出现次数一样多,有理由认为,"蜜蜂"和"养殖"的重要程度要大于"中国",也就是说,在关键词排序上面,"蜜蜂"和"养殖"应该排在"中国"的前面。

所以,我们需要一个重要性调整系数,衡量一个词是不是常见词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。

用统计学语言表达,就是在词频的基础上,要对每个词分配一个"重要性"权重。最常见的词("的"、"是"、"在")给予最小的权重,较常见的词("中国")给予较小的权重,较少见的词("蜜蜂"、"养殖")给予较大的权重。这个权重叫做"逆文档频率"(Inverse Document Frequency,缩写为IDF),它的大小与一个词的常见程度成反比。

知道了"词频"TF)和"逆文档频率"IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值。某个词对文章的重要性越高,它的TF-IDF值就越大。所以,排在最前面的几个词,就是这篇文章的关键词。

下面就是这个算法的细节。

第一步,计算词频。

考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。

或者

第二步,计算逆文档频率。

这时,需要一个语料库(corpus),用来模拟语言的使用环境。

如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log表示对得到的值取对数。

第三步,计算TF-IDF

可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。

还是以《中国的蜜蜂养殖》为例,假定该文长度为1000个词,"中国"、"蜜蜂"、"养殖"各出现20次,则这三个词的"词频"(TF)都为0.02。然后,搜索Google发现,包含"的"字的网页共有250亿张,假定这就是中文网页总数。包含"中国"的网页共有62.3亿张,包含"蜜蜂"的网页为0.484亿张,包含"养殖"的网页为0.973亿张。则它们的逆文档频率(IDF)和TF-IDF如下:

从上表可见,"蜜蜂"的TF-IDF值最高,"养殖"其次,"中国"最低。(如果还计算"的"字的TF-IDF,那将是一个极其接近0的值。)所以,如果只选择一个词,"蜜蜂"就是这篇文章的关键词。

除了自动提取关键词,TF-IDF算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词("中国"、"蜜蜂"、"养殖")的TF-IDF,将它们相加,就可以得到整个文档的TF-IDF。这个值最高的文档就是与搜索词最相关的文档。

TF-IDF算法的优点是简单快速,结果比较符合实际情况。缺点是,单纯以"词频"衡量一个词的重要性,不够全面,有时重要的词可能出现次数并不多。而且,这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。(一种解决方法是,对全文的第一段和每一段的第一句话,给予较大的权重。)

 

原文地址:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html

[转]TF-IDF与余弦相似性的应用(一):自动提取关键词的更多相关文章

  1. TF-IDF与余弦相似性的应用(一):自动提取关键词

    这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题. 有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才 ...

  2. TF-IDF与余弦相似性的应用(一):自动提取关键词 - 阮一峰的网络日志

    TF-IDF与余弦相似性的应用(一):自动提取关键词 - 阮一峰的网络日志     TF-IDF与余弦相似性的应用(一):自动提取关键词     作者: 阮一峰     日期: 2013年3月15日 ...

  3. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  4. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  5. TF-IDF与余弦相似性的应用(二):找出相似文章

    上一次,我用TF-IDF算法自动提取关键词. 今天,我们再来研究另一个相关的问题.有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章.比如,"Google新闻"在主新闻 ...

  6. 使用solr的函数查询,并获取tf*idf值

    1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func ...

  7. TF/IDF计算方法

    FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...

  8. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  9. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  10. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

随机推荐

  1. 跟我学SharePoint 2013视频培训课程——怎样创建列表和列表项(7)

    课程简介 第7天,怎样在SharePoint 2013中创建列表和列表项 视频 SharePoint 2013 交流群 41032413

  2. Install OpenCV3.0 on Eclipse

     Neste artigo veremos como usar o OpenCV com Eclipse. Usaremos as versões mais recentes:OpenCV 3.0 ...

  3. ASP.NET MVC中的cshtml页面中的下拉框的使用

    ASP.NET MVC中的cshtml页面中的下拉框的使用 用上@Html.DropDownList 先记下来..以做备忘...

  4. ssl与tls的差别

    1)版本号:TLS记录格式与SSL记录格式相同,但版本号的值不同,TLS的版本1.0便 用的版 本号为SSLv3.1. 2) 报文鉴别码:SSLv3.0和TLS的MAC算法的范围不同,但两者的安全层度 ...

  5. 当update的查询条件是数组的时候,upsert会失效

    不管是findOneAndUpdate还是update方法,只要他们的查询条件是数组,upsert就会失效,比如: //这段代码只会更新已存在的数据,不存在的不会插入 tagModel.update( ...

  6. 一个分布式 MySQL Binlog 存储系统的架构设计

    1. kingbus简介 1.1 kingbus是什么? kingbus是一个基于raft强一致协议实现的分布式MySQL binlog 存储系统.它能够充当一个MySQL Slave从真正的Mast ...

  7. C++11 delete和default

    Defaulted 函数 C++ 的类有四个特殊成员函数,它们分别是:默认构造函数.析构函数.拷贝构造函数以及拷贝赋值运算符.这些类的特殊成员函数负责创建.初始化.销毁,或者拷贝类的对象. 如果程序员 ...

  8. tensorflow笔记2:TensorBoard

    Tensorboard中的参数 Summary:所有需要在TensorBoard上展示的统计结果. tf.name_scope():为Graph中的Tensor添加层级,TensorBoard会按照代 ...

  9. flash 拾遗

    http://sourceforge.net/adobe/wiki/Projects/ http://www.adobe.com/devnet/air/air-sdk-download.html ht ...

  10. 【SimpleMsgPack.NET】发布一个msgpack协议C#版本的解析开源库

    这两年一直都关注这IOCP在网络通信这方面的应用,当然数据的传递是经常需要的.今年接触了MsgPack格式,发现他用来做传输时数据打包真是太爽了.因为他可以直接打包二进制数据,不需要任何的转换.有人会 ...