DCGAN in Tensorflow生成动漫人物
生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。
本文主要分为三个部分:
- 介绍原始的GAN的原理
- 同样非常重要的DCGAN的原理
- 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-)
GAN原理介绍
说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://arxiv.org/abs/1406.2661),这篇paper算是这个领域的开山之作。
GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:
- G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。
- D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。
在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。
最后博弈的结果是什么?在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。
这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。
以上只是大致说了一下GAN的核心原理,如何用数学语言描述呢?这里直接摘录论文里的公式:
简单分析一下这个公式:
- 整个式子由两项构成。x表示真实图片,z表示输入G网络的噪声,而G(z)表示G网络生成的图片。
- D(x)表示D网络判断真实图片是否真实的概率(因为x就是真实的,所以对于D来说,这个值越接近1越好)。而D(G(z))是D网络判断G生成的图片的是否真实的概率。
- G的目的:上面提到过,D(G(z))是D网络判断G生成的图片是否真实的概率,G应该希望自己生成的图片“越接近真实越好”。也就是说,G希望D(G(z))尽可能得大,这时V(D, G)会变小。因此我们看到式子的最前面的记号是min_G。
- D的目的:D的能力越强,D(x)应该越大,D(G(x))应该越小。这时V(D,G)会变大。因此式子对于D来说是求最大(max_D)
下面这幅图片很好地描述了这个过程:
那么如何用随机梯度下降法训练D和G?论文中也给出了算法:
这里红框圈出的部分是我们要额外注意的。第一步我们训练D,D是希望V(G, D)越大越好,所以是加上梯度(ascending)。第二步训练G时,V(G, D)越小越好,所以是减去梯度(descending)。整个训练过程交替进行。
DCGAN原理介绍
我们知道深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一(论文地址:[1511.06434] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks)
DCGAN的原理和GAN是一样的,这里就不在赘述。它只是把上述的G和D换成了两个卷积神经网络(CNN)。但不是直接换就可以了,DCGAN对卷积神经网络的结构做了一些改变,以提高样本的质量和收敛的速度,这些改变有:
- 取消所有pooling层。G网络中使用转置卷积(transposed convolutional layer)进行上采样,D网络中用加入stride的卷积代替pooling。
- 在D和G中均使用batch normalization
- 去掉FC层,使网络变为全卷积网络
- G网络中使用ReLU作为激活函数,最后一层使用tanh
- D网络中使用LeakyReLU作为激活函数
DCGAN中的G网络示意:
DCGAN in Tensorflow
好了,上面说了一通原理,下面说点有意思的实践部分的内容。
DCGAN的原作者用DCGAN生成LSUN的卧室图片,这并不是特别有意思。之前在网上看到一篇文章 Chainerで顔イラストの自動生成 - Qiita ,是用DCGAN生成动漫人物头像的,效果如下:
这是个很有趣的实践内容。可惜原文是用Chainer做的,这个框架使用的人不多。下面我们就在Tensorflow中复现这个结果。
原始数据集的搜集
首先我们需要用爬虫爬取大量的动漫图片,原文是在这个网站:http://safebooru.donmai.us/中爬取的。我尝试的时候,发现在我的网络环境下无法访问这个网站,于是我就写了一个简单的爬虫爬了另外一个著名的动漫图库网站:konachan.net - Konachan.com Anime Wallpapers。
爬虫代码如下:
- import requests
- from bs4 import BeautifulSoup
- import os
- import traceback
- def download(url, filename):
- if os.path.exists(filename):
- print('file exists!')
- return
- try:
- r = requests.get(url, stream=True, timeout=)
- r.raise_for_status()
- with open(filename, 'wb') as f:
- for chunk in r.iter_content(chunk_size=):
- if chunk: # filter out keep-alive new chunks
- f.write(chunk)
- f.flush()
- return filename
- except KeyboardInterrupt:
- if os.path.exists(filename):
- os.remove(filename)
- raise KeyboardInterrupt
- except Exception:
- traceback.print_exc()
- if os.path.exists(filename):
- os.remove(filename)
- if os.path.exists('imgs') is False:
- os.makedirs('imgs')
- start =
- end =
- for i in range(start, end + ):
- url = 'http://konachan.net/post?page=%d&tags=' % i
- html = requests.get(url).text
- soup = BeautifulSoup(html, 'html.parser')
- for img in soup.find_all('img', class_="preview"):
- target_url = 'http:' + img['src']
- filename = os.path.join('imgs', target_url.split('/')[-])
- download(target_url, filename)
- print('%d / %d' % (i, end))
这个爬虫大概跑了一天,爬下来12万张图片,大概是这样的:
可以看到这里面的图片大多数比较杂乱,还不能直接作为数据训练,我们需要用合适的工具,截取人物的头像进行训练。
头像截取
截取头像和原文一样,直接使用github上一个基于opencv的工具:nagadomi/lbpcascade_animeface。
简单包装下代码:
- 作者:何之源
- 链接:https://zhuanlan.zhihu.com/p/24767059
- 来源:知乎
- 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
- import cv2
- import sys
- import os.path
- from glob import glob
- def detect(filename, cascade_file="lbpcascade_animeface.xml"):
- if not os.path.isfile(cascade_file):
- raise RuntimeError("%s: not found" % cascade_file)
- cascade = cv2.CascadeClassifier(cascade_file)
- image = cv2.imread(filename)
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- gray = cv2.equalizeHist(gray)
- faces = cascade.detectMultiScale(gray,
- # detector options
- scaleFactor=1.1,
- minNeighbors=,
- minSize=(, ))
- for i, (x, y, w, h) in enumerate(faces):
- face = image[y: y + h, x:x + w, :]
- face = cv2.resize(face, (, ))
- save_filename = '%s-%d.jpg' % (os.path.basename(filename).split('.')[], i)
- cv2.imwrite("faces/" + save_filename, face)
- if __name__ == '__main__':
- if os.path.exists('faces') is False:
- os.makedirs('faces')
- file_list = glob('imgs/*.jpg')
- for filename in file_list:
- detect(filename)
截取头像后的人物数据:
这样就可以用来训练了!
如果你不想从头开始爬图片,可以直接使用我爬好的头像数据(275M,约5万多张图片):https://pan.baidu.com/s/1eSifHcA 提取码:g5qa
训练
DCGAN在Tensorflow中已经有人造好了轮子:carpedm20/DCGAN-tensorflow,我们直接使用这个代码就可以了。
不过原始代码中只提供了有限的几个数据库,如何训练自己的数据?在model.py中我们找到读数据的几行代码:
- if config.dataset == 'mnist':
- data_X, data_y = self.load_mnist()
- else:
- data = glob(os.path.join("./data", config.dataset, "*.jpg"))
这样读数据的逻辑就很清楚了,我们在data文件夹中再新建一个anime文件夹,把图片直接放到这个文件夹里,运行时指定–dataset anime即可。
运行指令(参数含义:指定生成的图片的尺寸为48x48,我们图片的大小是96x96,跑300个epoch):
- python main.py --image_size --output_size --dataset anime --is_crop True --is_train True --epoch
结果
第1个epoch跑完(只有一点点轮廓):
第5个epoch之后的结果:
第10个epoch:
200个epoch,仔细看有些图片确实是足以以假乱真的:
题图是我从第300个epoch生成的。
总结和后续
简单介绍了一下GAN和DCGAN的原理。以及如何使用Tensorflow做一个简单的生成图片的demo。
- Ian Goodfellow对GAN一系列工作总结的ppt,确实精彩,推荐:独家 | GAN之父NIPS 2016演讲现场直击:全方位解读生成对抗网络的原理及未来(附PPT)
- GAN论文汇总,包含code:zhangqianhui/AdversarialNetsPapers
DCGAN in Tensorflow生成动漫人物的更多相关文章
- 0902-用GAN生成动漫头像
0902-用GAN生成动漫头像 目录 一.概述 二.代码结构 三.model.py 3.1 生成器 3.2 判别器 四.参数配置 五.数据处理 六.训练 七.随机生成图片 八.训练模型并测试 pyto ...
- Tensorflow生成唐诗和歌词(下)
整个工程使用的是Windows版pyCharm和tensorflow. 源码地址:https://github.com/Irvinglove/tensorflow_poems/tree/master ...
- Tensorflow生成唐诗和歌词(上)
整个工程使用的是Windows版pyCharm和tensorflow. 源码地址:https://github.com/Irvinglove/tensorflow_poems/tree/master ...
- 3. Tensorflow生成TFRecord
1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...
- TensorFlow 生成 .ckpt 和 .pb
原文:https://www.cnblogs.com/nowornever-L/p/6991295.html 1. TensorFlow 生成的 .ckpt 和 .pb 都有什么用? The . ...
- 『TensorFlow』DCGAN生成动漫人物头像_下
『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算 ...
- 【神经网络与深度学习】DCGAN及其TensorFlow源码
上一节我们提到G和D由多层感知机定义.深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一.源码:https://github.com/Newmu ...
- tensorflow 生成随机数 tf.random_normal 和 tf.random_uniform 和 tf.truncated_normal 和 tf.random_shuffle
____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_norma ...
- tensorflow生成随机数的操作 tf.random_normal & tf.random_uniform & tf.truncated_normal & tf.random_shuffle
tf.random_normal 从正态分布输出随机值. random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name ...
随机推荐
- 要想有什么样的成就就要有什么样的眼光-SNF快速开发平台
1.普通人的圈子,谈论的是闲事,赚的是 工资,想的是明天. 2.生意人的圈子,谈论的是项目,赚的是 利润,想的是下一年. 3.事业人的圈子,谈论的是机会,赚的是 财富,想到的是未来和保障. 4.智慧人 ...
- java中多个数字运算后值不对(失真)处理方法
最近遇到一个bug ,在java里面计算两个数字相减,633011.20-31296.30 得到的结果居然是601714.8999999999,丢失精度了,原来这是Java浮点运算的一个bug. 解决 ...
- pm2 设置开机启动
一.官方文档: 官方相关文档:http://pm2.keymetrics.io/docs/usage/startup/#generating-a-startup-script 二.具体操作过程如下: ...
- MySQL 5.6学习笔记(索引的创建与删除)
1. 创建索引 1.1 创建新表时同时建立索引 语法: create table table_name[col_name data_type] [unique|fulltext|spatial][in ...
- Android开发之API应用指南
原文:http://android.eoe.cn/topic/android_sdk 编辑流程 这里主要是和Android技术相关的开发指南,很多都是来源于官方的API Guides( http:// ...
- [hihoCoder] 第四十八周: 拓扑排序·二
题目1 : 拓扑排序·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho所在学校的校园网被黑客入侵并投放了病毒.这事在校内BBS上立刻引起了大家的讨论,当 ...
- 【Unity】12.4 通过网格分层选择行进路线
开发环境:Win10.Unity5.3.4.C#.VS2015 创建日期:2016-05-09 一.简介 在具体的游戏情景中,通过分层可以控制物体的行进路线,比如哪些物体只能住水面上行进,哪些物体只能 ...
- Logcat + money 笔记
如下命令:将过滤后的日志按照指定格式输出到指定的文件中 adb logcat -v time -s Test_Tag:v > logcat_local.txt A:其中 -v time 用来指定 ...
- Golang之字符串格式化
字符串格式化 // Go 之 字符串格式化 // // Copyright (c) 2015 - Batu // package main import ( "fmt" ) typ ...
- ubuntu 16.04 root 初始密码设置
()默认root密码是随机的,即每次开机都有一个新的root密码.我们可以在终端输命令 sudo passwd,然后输入当前用户的密码,enter ()终端会提示我们输入新的密码并确认,此时的密码就是 ...