岭回归(Ridge Regression)
一、一般线性回归遇到的问题
在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:
- 预测精度:这里要处理好这样一对为题,即样本的数量
和特征的数量
时,最小二乘回归会有较小的方差
时,容易产生过拟合
时,最小二乘回归得不到有意义的结果
- 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择。
以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明:
(摘自:机器学习实战)
方差指的是模型之间的差异,而偏差指的是模型预测值和数据之间的差异。我们需要找到方差和偏差的折中。
二、岭回归的概念
在进行特征选择时,一般有三种方式:
- 子集选择
- 收缩方式(Shrinkage method),又称为正则化(Regularization)。主要包括岭回归个lasso回归。
- 维数缩减
岭回归(Ridge Regression)是在平方误差的基础上增加正则项
,
通过确定的值可以使得在方差和偏差之间达到平衡:随着
的增大,模型方差减小而偏差增大。
对求导,结果为
令其为0,可求得的值:
三、实验的过程
我们去探讨一下取不同的对整个模型的影响。
MATLAB代码
主函数
- %% 岭回归(Ridge Regression)
- %导入数据
- data = load('abalone.txt');
- [m,n] = size(data);
- dataX = data(:,1:8);%特征
- dataY = data(:,9);%标签
- %标准化
- yMeans = mean(dataY);
- for i = 1:m
- yMat(i,:) = dataY(i,:)-yMeans;
- end
- xMeans = mean(dataX);
- xVars = var(dataX);
- for i = 1:m
- xMat(i,:) = (dataX(i,:) - xMeans)./xVars;
- end
- % 运算30次
- testNum = 30;
- weights = zeros(testNum, n-1);
- for i = 1:testNum
- w = ridgeRegression(xMat, yMat, exp(i-10));
- weights(i,:) = w';
- end
- % 画出随着参数lam
- hold on
- axis([-9 20 -1.0 2.5]);
- xlabel log(lam);
- ylabel weights;
- for i = 1:n-1
- x = -9:20;
- y(1,:) = weights(:,i)';
- plot(x,y);
- end
岭回归求回归系数的函数
- function [ w ] = ridgeRegression( x, y, lam )
- xTx = x'*x;
- [m,n] = size(xTx);
- temp = xTx + eye(m,n)*lam;
- if det(temp) == 0
- disp('This matrix is singular, cannot do inverse');
- end
- w = temp^(-1)*x'*y;
- end
http://blog.csdn.net/google19890102/article/details/27228279
数值计算方法的“稳定性”是指在计算过程中舍入误差是可以控制的。
对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为“病态矩阵”。有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态。对于高斯消去法来说,如果主元(即对角线上的元素)上的元素很小,在计算时就会表现出病态的特征。
回归分析中常用的最小二乘法是一种无偏估计。
当X列满秩时,有
X+表示X的广义逆(或叫伪逆)。
当X不是列满秩,或者某些列之间的线性相关性比较大时,XTX的行列式接近于0,即XTX接近于奇异,计算(XTX)-1时误差会很大。此时传统的最小二乘法缺乏稳定性与可靠性。
岭回归是对最小二乘回归的一种补充,它损失了无偏性,来换取高的数值稳定性,从而得到较高的计算精度。
当XTX的行列式接近于0时,我们将其主对角元素都加上一个数k,可以使矩阵为奇异的风险大降低。于是:
(I是单位矩阵)
随着k的增大,B(k)中各元素bi(k)的绝对值均趋于不断变小,它们相对于正确值bi的偏差也越来越大。k趋于无穷大时,B(k)趋于0。b(k)随k的改变而变化的轨迹,就称为岭迹。实际计算中可选非常多的k值,做出一个岭迹图,看看这个图在取哪个值的时候变稳定了,那就确定k值了。
X不满足列满秩,换句话就是说样本向量之间具有高度的相关性(如果每一列是一个向量的话)。遇到列向量相关的情形,岭回归是一种处理方法,也可以用主成分分析PCA来进行降维。
http://www.cnblogs.com/zhangchaoyang 作者:Orisun
岭回归(Ridge Regression)的更多相关文章
- Jordan Lecture Note-4: Linear & Ridge Regression
Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y ...
- L1,L2范数和正则化 到lasso ridge regression
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数 表示向量xx中非零元素的个数. L1范数 表示向量中非零元素的绝对值之和. L2范数 表 ...
- 在线场景感知:图像稀疏表示—ScSPM和LLC总结(以及lasso族、岭回归)
前言: 场景感知其实不分三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程.场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的 ...
- Ridge Regression(岭回归)
Ridge Regression岭回归 数值计算方法的"稳定性"是指在计算过程中舍入误差是可以控制的. 对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这 ...
- scikit-learn中的岭回归(Ridge Regression)与Lasso回归
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...
- 机器学习:模型泛化(岭回归:Ridge Regression)
一.基础理解 模型正则化(Regularization) # 有多种操作方差,岭回归只是其中一种方式: 功能:通过限制超参数大小,解决过拟合或者模型含有的巨大的方差误差的问题: 影响拟合曲线的两个因子 ...
- 线性回归——lasso回归和岭回归(ridge regression)
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...
- Sklearn库例子3:分类——岭回归分类(Ridge Regression )例子
为了解决数据的特征比样本点还多的情况,统计学家引入了岭回归. 岭回归通过施加一个惩罚系数的大小解决了一些普通最小二乘的问题.回归系数最大限度地减少了一个惩罚的误差平方和. 这里是一个复杂的参数,用来控 ...
- 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...
随机推荐
- 23种设计模式之代理模式(Proxy)
代理模式是一种对象结构型模式,可为某个对象提供一个代理,并由代理对象控制对原对象的引用.代理模式能够协调调用者和被调用者,能够在一定程度上降低系统的耦合度,其缺点是请求的处理速度会变慢,并且实现代理模 ...
- 【CF891E】Lust 生成函数
[CF891E]Lust 题意:给你一个长度为n的序列$a_i$,对这个序列进行k次操作,每次随机选择一个1到n的数x,令$res+=\prod\limits_{i!=x}a_i$(一开始res=0) ...
- python 测试框架之---testtools
在tempest框架中,使用的是testtools为基础框架来运行接口自动化 一.初识 testools是属于python中诸多自动化框架中的一个,官方文档如下: http://testtools.r ...
- MVC4.0 IIS 7.5 详细错误 - 404.0 - Not Found
出现环境:win7 + IIS7.5 问题如下: 1.IIS的根节点->右侧“ISAPI和CGI限制”->把禁止的DotNet版本项设置为允许 如果不行就进行下一步 2.选择站点-> ...
- java的前缀自增自减和后缀自增自减
2.前缀自增自减法(++a,--a): 先进行自增或者自减运算,再进行表达式运算. 3.后缀自增自减法(a++,a--): 先进行表达式运算,再进行自增或者自减运算 实例: 实例 public cla ...
- visual studio 2013设置背景图片
今天听了公司的一个经验分享会,发现VS竟然可以设置背景图片!还是个萌妹子!!被萌了一脸鼻血!!! 设置方法很简单:安装扩展ClaudiaIDE 1.在这里下载扩展,https://visualstud ...
- wpgcms---详情页面数据怎么渲染
wpgcms的详情页面的数据会被保存在 contentInfo 这么一个字段里面. 面包屑导航调用: <p>当前位置 {% for c in crumb|slice(1, crumb|le ...
- js 字符中 带 函数 再传对象参数
不替换 ( .replace(/\"/g, "\\\"") )则会有错误: Uncaught SyntaxError: missing ) after argu ...
- hdu 1525 Euclid's Game【 博弈论】
Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtra ...
- 1.5神经网络可视化显示(matplotlib)
神经网络训练+可视化显示 #添加隐层的神经网络结构+可视化显示 import tensorflow as tf def add_layer(inputs,in_size,out_size,activa ...