LeetCode 18 4Sum (4个数字之和等于target)
题目链接 https://leetcode.com/problems/4sum/?tab=Description
找到数组中满足 a+b+c+d=0的所有组合,要求不重复。
Basic idea is using subfunctions for 3sum and 2sum, and keeping throwing all impossible cases. O(n^3) time complexity, O(1) extra space complexity.
首先进行判断,由于是四个数相加等于target,其中可以通过判断剪去一些不必要的分支:
for (i = 0; i < len; i++) {
z = nums[i];
if (i > 0 && z == nums[i - 1])// avoid duplicate
continue;
if (z + 3 * max < target) // z is too small
continue;
if (4 * z > target) // z is too large
break;
if (4 * z == target) { // z is the boundary
if (i + 3 < len && nums[i + 3] == z)
res.add(Arrays.asList(z, z, z, z));
break;
}
threeSumForFourSum(nums, target - z, i + 1, len - 1, res, z);
}
进入3个数相加的同时,需要对target进行更新。
for (i = low; i < high - 1; i++) {
z = nums[i];
if (i > low && z == nums[i - 1]) // avoid duplicate
continue;
if (z + 2 * max < target) // z is too small
continue;
if (3 * z > target) // z is too large
break;
if (3 * z == target) { // z is the boundary
if (i + 1 < high && nums[i + 2] == z)
fourSumList.add(Arrays.asList(z1, z, z, z));
break;
}
twoSumForFourSum(nums, target - z, i + 1, high, fourSumList, z1, z);
}
进入两个数相加时,问题得到进一步简化。
int i = low, j = high, sum, x;
while (i < j) {
sum = nums[i] + nums[j];
if (sum == target) {
fourSumList.add(Arrays.asList(z1, z2, nums[i], nums[j])); x = nums[i];
while (++i < j && x == nums[i]) // avoid duplicate
;
x = nums[j];
while (i < --j && x == nums[j]) // avoid duplicate
;
}
if (sum < target)
i++;
if (sum > target)
j--;
}
参考代码:
package leetcode_50; import java.util.ArrayList;
import java.util.Arrays;
import java.util.List; /***
*
* @author pengfei_zheng
* 四个数加法等于target
*/
public class Solution18 {
public List<List<Integer>> fourSum(int[] nums, int target) {
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
int len = nums.length;
if (nums == null || len < 4) //不足4个元素
return res; Arrays.sort(nums);//排序 int max = nums[len - 1];
if (4 * nums[0] > target || 4 * max < target)//4个最小值之和超过target或者4个最大值之和小于target
return res; int i, z;
for (i = 0; i < len; i++) {
z = nums[i];
if (i > 0 && z == nums[i - 1])// avoid duplicate
continue;
if (z + 3 * max < target) // z is too small
continue;
if (4 * z > target) // z is too large
break;
if (4 * z == target) { // z is the boundary
if (i + 3 < len && nums[i + 3] == z)
res.add(Arrays.asList(z, z, z, z));
break;
} threeSumForFourSum(nums, target - z, i + 1, len - 1, res, z);
} return res;
} public void threeSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList,
int z1) {
if (low + 1 >= high)
return; int max = nums[high];
if (3 * nums[low] > target || 3 * max < target)
return; int i, z;
for (i = low; i < high - 1; i++) {
z = nums[i];
if (i > low && z == nums[i - 1]) // avoid duplicate
continue;
if (z + 2 * max < target) // z is too small
continue; if (3 * z > target) // z is too large
break; if (3 * z == target) { // z is the boundary
if (i + 1 < high && nums[i + 2] == z)
fourSumList.add(Arrays.asList(z1, z, z, z));
break;
} twoSumForFourSum(nums, target - z, i + 1, high, fourSumList, z1, z);
} } public void twoSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList,
int z1, int z2) { if (low >= high)
return; if (2 * nums[low] > target || 2 * nums[high] < target)
return; int i = low, j = high, sum, x;
while (i < j) {
sum = nums[i] + nums[j];
if (sum == target) {
fourSumList.add(Arrays.asList(z1, z2, nums[i], nums[j])); x = nums[i];
while (++i < j && x == nums[i]) // avoid duplicate
;
x = nums[j];
while (i < --j && x == nums[j]) // avoid duplicate
;
}
if (sum < target)
i++;
if (sum > target)
j--;
}
return;
}
}
Full Code
LeetCode 18 4Sum (4个数字之和等于target)的更多相关文章
- LeetCode 18. 4Sum (四数之和)
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
- [LeetCode] 454. 4Sum II 四数之和II
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such t ...
- [LeetCode] 18. 4Sum 四数之和
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
- LeetCode——18. 4Sum
一.题目链接:https://leetcode.com/problems/4sum/ 二.题目大意: 给定一个数组A和一个目标值target,要求从数组A中找出4个数来使之构成一个4元祖,使得这四个数 ...
- 18 4Sum(寻找四个数之和为指定数的集合Medium)
题目意思:给一个乱序数组,在里面寻找三个数之和为target的所有情况,这些情况不能重复,增序排列 思路:采用3Sum的做法 ps:有见一种用hash的,存任意两个元素的和,然后变成3sum问题,需要 ...
- leetcode 18 4Sum JAVA
题目 给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出 ...
- [leetcode]18. 4Sum四数之和
Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums s ...
- LeetCode OJ:4Sum(4数字之和)
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
- [LeetCode] 18. 4Sum ☆☆
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
随机推荐
- C# 分享几个ip的方法吧,包括正则验证ip
/// <summary> /// 正规则试验IP地址 /// </summary> /// <param name="IP"></par ...
- iOS:PSTCollectionView
https://github.com/steipete/PSTCollectionView Open Source, 100% API compatible replacement of UIColl ...
- vim介绍/vim颜色显示和移动光标/ vim一般模式下移动光标/ vim一般模式下复制、剪切和粘贴
5.1 vim介绍 5.2 vim颜色显示和移动光标 5.3 vim一般模式下移动光标 5.4 vim一般模式下复制.剪切和粘贴 vim 是vi的升级版本 vim 带有颜色显示 安装vim : y ...
- Activity优化几个结束的方法
package com.itau.jingdong; import java.util.Stack; import android.app.Activity; import android.app.A ...
- 通过tarball形式安装HBASE Cluster(CDH5.0.2)——如何配置分布式集群中的zookeeper
集群安装总览参见这里 Zookeeper的配置 1,/etc/profile中加入zk的路径设置,见上面背景说明. 2,进入~/zk/conf目录,复制zoo_sample.cfg为zoo.cfg v ...
- 装饰模式(Decorator Pattern)--------结构型模式
装饰模式可以在不改变一个对象本身功能的基础上给对象增加额外的新行为.装饰模式降低类系统的耦合度,可以动态地增加或删除对象的职责,并使得需要装饰的具体构件类和具体装饰类可以独立变化,以便增加新的具体构件 ...
- ubuntu:如何制作类似jeso的系统?
chroot 下载ubuntu的core包或base包 chroo后,先安装grub,再kernel,基本就ok了! 提示:mount --bind /proc newroot/proc 可能的问题 ...
- Android 内存
memory usage of this progress under 15MB for 1GB RAM device Android内存机制分析下篇:分析APP内存使用情况http://mobile ...
- Windbg在软件调试中的应用
Windbg在软件调试中的应用 Windbg是微软提供的一款免费的,专门针对Windows应用程序的调试工具.借助于Windbg, 我们常见的软件问题:软件异常,死锁,内存泄漏等,就可以进行高效的排查 ...
- VS或编译的时候不生成Release文件夹
今天在编译第三方类的时候,总是发布的时候报没有第三方类库的的Release版本 解决方案: Build=>Configuration Manager=>Release 编译=>配置管 ...