【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening
习题链接:Exercise:PCA and Whitening
pca_gen.m
%%================================================================
%% Step 0a: Load data
% Here we provide the code to load natural image data into x.
% x will be a * matrix, where the kth column x(:, k) corresponds to
% the raw image data from the kth 12x12 image patch sampled.
% You do not need to change the code below. x = sampleIMAGESRAW();
figure('name','Raw images');
randsel = randi(size(x,),,); % A random selection of samples for visualization
display_network(x(:,randsel)); %%================================================================
%% Step 0b: Zero-mean the data (by row)
% You can make use of the mean and repmat/bsxfun functions. % -------------------- YOUR CODE HERE --------------------
x = x-repmat(mean(x,),size(x,),); %%================================================================
%% Step 1a: Implement PCA to obtain xRot
% Implement PCA to obtain xRot, the matrix in which the data is expressed
% with respect to the eigenbasis of sigma, which is the matrix U. % -------------------- YOUR CODE HERE --------------------
%xRot = zeros(size(x)); % You need to compute this
sigma = x*x' ./ size(x,2);
[u,s,v] = svd(sigma);
xRot = u' * x; %%================================================================
%% Step 1b: Check your implementation of PCA
% The covariance matrix for the data expressed with respect to the basis U
% should be a diagonal matrix with non-zero entries only along the main
% diagonal. We will verify this here.
% Write code to compute the covariance matrix, covar.
% When visualised as an image, you should see a straight line across the
% diagonal (non-zero entries) against a blue background (zero entries). % -------------------- YOUR CODE HERE --------------------
%covar = zeros(size(x, )); % You need to compute this
covar = xRot*xRot' ./ size(x,2); % Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure('name','Visualisation of covariance matrix');
imagesc(covar); %%================================================================
%% Step : Find k, the number of components to retain
% Write code to determine k, the number of components to retain in order
% to retain at least % of the variance. % -------------------- YOUR CODE HERE --------------------
%k = ; % Set k accordingly
eigenvalue = diag(covar);
total = sum(eigenvalue);
tmpSum = ;
for k=:size(x,)
tmpSum = tmpSum+eigenvalue(k);
if(tmpSum / total >= 0.9)
break;
end
end
%%================================================================
%% Step : Implement PCA with dimension reduction
% Now that you have found k, you can reduce the dimension of the data by
% discarding the remaining dimensions. In this way, you can represent the
% data in k dimensions instead of the original , which will save you
% computational time when running learning algorithms on the reduced
% representation.
%
% Following the dimension reduction, invert the PCA transformation to produce
% the matrix xHat, the dimension-reduced data with respect to the original basis.
% Visualise the data and compare it to the raw data. You will observe that
% there is little loss due to throwing away the principal components that
% correspond to dimensions with low variation. % -------------------- YOUR CODE HERE --------------------
%xHat = zeros(size(x)); % You need to compute this
xRot(k+:size(x,), :) = ;
xHat = u * xRot; % Visualise the data, and compare it to the raw data
% You should observe that the raw and processed data are of comparable quality.
% For comparison, you may wish to generate a PCA reduced image which
% retains only % of the variance. figure('name',['PCA processed images ',sprintf('(%d / %d dimensions)', k, size(x, )),'']);
display_network(xHat(:,randsel));
figure('name','Raw images');
display_network(x(:,randsel)); %%================================================================
%% Step 4a: Implement PCA with whitening and regularisation
% Implement PCA with whitening and regularisation to produce the matrix
% xPCAWhite. %epsilon = ;
epsilon = 0.1;
%xPCAWhite = zeros(size(x)); % -------------------- YOUR CODE HERE --------------------
xPCAWhite = diag( ./ sqrt(diag(s)+epsilon)) * u' * x; %%================================================================
%% Step 4b: Check your implementation of PCA whitening
% Check your implementation of PCA whitening with and without regularisation.
% PCA whitening without regularisation results a covariance matrix
% that is equal to the identity matrix. PCA whitening with regularisation
% results in a covariance matrix with diagonal entries starting close to
% and gradually becoming smaller. We will verify these properties here.
% Write code to compute the covariance matrix, covar.
%
% Without regularisation (set epsilon to or close to ),
% when visualised as an image, you should see a red line across the
% diagonal (one entries) against a blue background (zero entries).
% With regularisation, you should see a red line that slowly turns
% blue across the diagonal, corresponding to the one entries slowly
% becoming smaller. % -------------------- YOUR CODE HERE --------------------
covar = xPCAWhite * xPCAWhite' ./ size(x,2); % Visualise the covariance matrix. You should see a red line across the
% diagonal against a blue background.
figure('name','Visualisation of covariance matrix');
imagesc(covar); %%================================================================
%% Step : Implement ZCA whitening
% Now implement ZCA whitening to produce the matrix xZCAWhite.
% Visualise the data and compare it to the raw data. You should observe
% that whitening results in, among other things, enhanced edges. %xZCAWhite = zeros(size(x));
xZCAWhite = u * xPCAWhite; % -------------------- YOUR CODE HERE -------------------- % Visualise the data, and compare it to the raw data.
% You should observe that the whitened images have enhanced edges.
figure('name','ZCA whitened images');
display_network(xZCAWhite(:,randsel));
figure('name','Raw images');
display_network(x(:,randsel));
【DeepLearning】Exercise:PCA and Whitening的更多相关文章
- 【DeepLearning】Exercise:PCA in 2D
Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...
- 【DeepLearning】Exercise:Convolution and Pooling
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- 【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...
- 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 【DeepLearning】Exercise:Self-Taught Learning
Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...
- 【DeepLearning】Exercise:Vectorization
Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
随机推荐
- Octave环境的安装
Octave是一种解释类的编程语言,并且是GNU项目下的开源软件,与之相对是大家都非常熟悉的matlab,Octave和matlab语法基本上一致,都是用来快速做一些强大的矩阵运算来使用的,最大的不同 ...
- 理解TensorFlow的Queue
https://www.jianshu.com/p/d063804fb272 这篇文章来说说TensorFlow里与Queue有关的概念和用法. 其实概念只有三个: Queue是TF队列和缓存机制的实 ...
- 转:CRF++词性标注
CRF++词性标注 2016-02-28 分类:NLP 阅读(5558) 评论(19) 训练和测试的语料都是人民日报98年标注语料,训练和测试比例是10:1,直接通过CRF++标注词性的准确率:0. ...
- 基于Deep Learning的中文分词尝试
http://h2ex.com/1282 现有分词介绍 自然语言处理(NLP,Natural Language Processing)是一个信息时代最重要的技术之一,简单来讲,就是让计算机能够理解人类 ...
- Medline Plus
提问地址: http://apps2.nlm.nih.gov/medlineplus/contact/index.cfm?lang=en&from=http://www.nlm.nih.gov ...
- Structured Streaming编程向导
简介 Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark ...
- Spring 集成 redistemplate
jar包 <version.clients.jedis>2.7.2</version.clients.jedis><version.data.redis>1.6.2 ...
- (转)No row with the given identifier exists问题的解决
产生此问题的原因: 有两张表,table1和table2.产生此问题的原因就是table1里做了关联<one-to-one>或者<many-to-one unique ...
- PHP Manager for IIS
SOAP error on IIS8 Registering new PHP version sets bad values set for FastCGI activityTimeout, requ ...
- 发布web应用程序是出现unsafe code
找到了解决办法 解决方法参照: https://stackoverflow.com/questions/16567197/publish-web-application-with-unsafe-cod ...