【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening
习题链接:Exercise:PCA and Whitening
pca_gen.m
%%================================================================
%% Step 0a: Load data
% Here we provide the code to load natural image data into x.
% x will be a * matrix, where the kth column x(:, k) corresponds to
% the raw image data from the kth 12x12 image patch sampled.
% You do not need to change the code below. x = sampleIMAGESRAW();
figure('name','Raw images');
randsel = randi(size(x,),,); % A random selection of samples for visualization
display_network(x(:,randsel)); %%================================================================
%% Step 0b: Zero-mean the data (by row)
% You can make use of the mean and repmat/bsxfun functions. % -------------------- YOUR CODE HERE --------------------
x = x-repmat(mean(x,),size(x,),); %%================================================================
%% Step 1a: Implement PCA to obtain xRot
% Implement PCA to obtain xRot, the matrix in which the data is expressed
% with respect to the eigenbasis of sigma, which is the matrix U. % -------------------- YOUR CODE HERE --------------------
%xRot = zeros(size(x)); % You need to compute this
sigma = x*x' ./ size(x,2);
[u,s,v] = svd(sigma);
xRot = u' * x; %%================================================================
%% Step 1b: Check your implementation of PCA
% The covariance matrix for the data expressed with respect to the basis U
% should be a diagonal matrix with non-zero entries only along the main
% diagonal. We will verify this here.
% Write code to compute the covariance matrix, covar.
% When visualised as an image, you should see a straight line across the
% diagonal (non-zero entries) against a blue background (zero entries). % -------------------- YOUR CODE HERE --------------------
%covar = zeros(size(x, )); % You need to compute this
covar = xRot*xRot' ./ size(x,2); % Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure('name','Visualisation of covariance matrix');
imagesc(covar); %%================================================================
%% Step : Find k, the number of components to retain
% Write code to determine k, the number of components to retain in order
% to retain at least % of the variance. % -------------------- YOUR CODE HERE --------------------
%k = ; % Set k accordingly
eigenvalue = diag(covar);
total = sum(eigenvalue);
tmpSum = ;
for k=:size(x,)
tmpSum = tmpSum+eigenvalue(k);
if(tmpSum / total >= 0.9)
break;
end
end
%%================================================================
%% Step : Implement PCA with dimension reduction
% Now that you have found k, you can reduce the dimension of the data by
% discarding the remaining dimensions. In this way, you can represent the
% data in k dimensions instead of the original , which will save you
% computational time when running learning algorithms on the reduced
% representation.
%
% Following the dimension reduction, invert the PCA transformation to produce
% the matrix xHat, the dimension-reduced data with respect to the original basis.
% Visualise the data and compare it to the raw data. You will observe that
% there is little loss due to throwing away the principal components that
% correspond to dimensions with low variation. % -------------------- YOUR CODE HERE --------------------
%xHat = zeros(size(x)); % You need to compute this
xRot(k+:size(x,), :) = ;
xHat = u * xRot; % Visualise the data, and compare it to the raw data
% You should observe that the raw and processed data are of comparable quality.
% For comparison, you may wish to generate a PCA reduced image which
% retains only % of the variance. figure('name',['PCA processed images ',sprintf('(%d / %d dimensions)', k, size(x, )),'']);
display_network(xHat(:,randsel));
figure('name','Raw images');
display_network(x(:,randsel)); %%================================================================
%% Step 4a: Implement PCA with whitening and regularisation
% Implement PCA with whitening and regularisation to produce the matrix
% xPCAWhite. %epsilon = ;
epsilon = 0.1;
%xPCAWhite = zeros(size(x)); % -------------------- YOUR CODE HERE --------------------
xPCAWhite = diag( ./ sqrt(diag(s)+epsilon)) * u' * x; %%================================================================
%% Step 4b: Check your implementation of PCA whitening
% Check your implementation of PCA whitening with and without regularisation.
% PCA whitening without regularisation results a covariance matrix
% that is equal to the identity matrix. PCA whitening with regularisation
% results in a covariance matrix with diagonal entries starting close to
% and gradually becoming smaller. We will verify these properties here.
% Write code to compute the covariance matrix, covar.
%
% Without regularisation (set epsilon to or close to ),
% when visualised as an image, you should see a red line across the
% diagonal (one entries) against a blue background (zero entries).
% With regularisation, you should see a red line that slowly turns
% blue across the diagonal, corresponding to the one entries slowly
% becoming smaller. % -------------------- YOUR CODE HERE --------------------
covar = xPCAWhite * xPCAWhite' ./ size(x,2); % Visualise the covariance matrix. You should see a red line across the
% diagonal against a blue background.
figure('name','Visualisation of covariance matrix');
imagesc(covar); %%================================================================
%% Step : Implement ZCA whitening
% Now implement ZCA whitening to produce the matrix xZCAWhite.
% Visualise the data and compare it to the raw data. You should observe
% that whitening results in, among other things, enhanced edges. %xZCAWhite = zeros(size(x));
xZCAWhite = u * xPCAWhite; % -------------------- YOUR CODE HERE -------------------- % Visualise the data, and compare it to the raw data.
% You should observe that the whitened images have enhanced edges.
figure('name','ZCA whitened images');
display_network(xZCAWhite(:,randsel));
figure('name','Raw images');
display_network(x(:,randsel));
【DeepLearning】Exercise:PCA and Whitening的更多相关文章
- 【DeepLearning】Exercise:PCA in 2D
Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...
- 【DeepLearning】Exercise:Convolution and Pooling
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- 【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...
- 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 【DeepLearning】Exercise:Self-Taught Learning
Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...
- 【DeepLearning】Exercise:Vectorization
Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
随机推荐
- Android Studio中实现AIDL
AIDL 先来两个传送门: http://www.cnblogs.com/yydcdut/p/3961545.html Android面试,与Service交互方式 http://www.cnblog ...
- 【转】TensorFlow四种Cross Entropy算法实现和应用
http://www.jianshu.com/p/75f7e60dae95 作者:陈迪豪 来源:CSDNhttp://dataunion.org/26447.html 交叉熵介绍 交叉熵(Cross ...
- SearchBySql
Java: public List<Accountingdisclosure> searchAccountingdisclosuresBySql(String sqlStr)throws ...
- (转)Pixel-Fillrate显卡像素填充率
[Pixel-Fillrate] “填充率“以每秒钟填充的像素点为单位,“三角形(多边形)生成速度“则表示每秒钟三角形(多边形)生成个数.现在的3D显卡的性能也主要看着两项指标,这两项指标的数值越大, ...
- ZOJ 3456 Traveler Nobita 最小生成树
Traveler Nobita Time Limit: 2 Seconds Memory Limit: 65536 KB One day, Nobita used a time machin ...
- javascript简写精练
一.算术运算符 var n = 5,v; 1.n = n*5; 2.n*=5; 同 n = n*5 二.条件判断 var b = true; 1.if (!false) { alert('true') ...
- PHP http_build_query()方法
http_build_query (PHP 5) http_build_query -- 生成 url-encoded 之后的请求字符串描述 string http_build_query ( arr ...
- 微信小程序 - 接口更新记录以及解决方案(2018/12/26)
2018/8/17 - 背景音频需要在app.json添加requireBackGroundModes 2018/9/12 - 微信更改获取用户信息接口/获取位置等接口 - button 2018/1 ...
- 微信小程序 - async/await
下面只是做一些介绍以及使用的原因,详情介绍还请移步博主:https://www.cnblogs.com/SamWeb/p/8417940.html regenerator-runtime下载:http ...
- AngularJS实现三级Table列表
angular.module('yo03App') .controller('MyrouteCtrl', function ($scope) { $scope.professors = [{ 'nam ...