Edit Distance leetcode java
题目:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
题解:
处理这道题也是用动态规划。
动态数组dp[word1.length+1][word2.length+1]
dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。
假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。
以下两种可能性:
1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]
2. x != y
(1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1
(2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1
(3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1
最少的步骤就是取这三个中的最小值。
最后返回 dp[word1.length+1][word2.length+1] 即可。
代码如下:
1 public static int minDistance(String word1, String word2) {
2 int len1 = word1.length();
3 int len2 = word2.length();
4
5 // len1+1, len2+1, because finally return dp[len1][len2]
6 int[][] dp = new int[len1 + 1][len2 + 1];
7
8 for (int i = 0; i <= len1; i++)
9 dp[i][0] = i;
for (int j = 0; j <= len2; j++)
dp[0][j] = j;
//iterate though, and check last char
for (int i = 1; i <= len1; i++) {
char c1 = word1.charAt(i-1);
for (int j = 1; j <= len2; j++) {
char c2 = word2.charAt(j-1);
//if last two chars equal
if (c1 == c2) {
//update dp value for +1 length
dp[i][j] = dp[i-1][j-1];
} else {
int replace = dp[i-1][j-1] + 1;
int insert = dp[i-1][j] + 1;
int delete = dp[i][j-1] + 1;
int min = Math.min(replace, insert);
min = Math.min(min,delete);
dp[i][j] = min;
}
}
}
return dp[len1][len2];
}
Reference:
http://www.programcreek.com/2013/12/edit-distance-in-java/
http://blog.csdn.net/linhuanmars/article/details/24213795
Edit Distance leetcode java的更多相关文章
- edit distance leetcode
这样的字符转换的dp挺经典的, 若word1[i+1]==word2[j+1] dp[i+1][j+1] = dp[i][j]:否则,dp[i+1][j+1] = dp[i][j] + 1.(替换原则 ...
- Java for LeetCode 072 Edit Distance【HARD】
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- ✡ leetcode 161. One Edit Distance 判断两个字符串是否是一步变换 --------- java
Given two strings S and T, determine if they are both one edit distance apart. 给定两个字符串,判断他们是否是一步变换得到 ...
- LeetCode One Edit Distance
原题链接在这里:https://leetcode.com/problems/one-edit-distance/ Given two strings S and T, determine if the ...
- 【LeetCode】161. One Edit Distance
Difficulty: Medium More:[目录]LeetCode Java实现 Description Given two strings S and T, determine if the ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- [LeetCode] Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- [leetcode]161. One Edit Distance编辑步数为一
Given two strings s and t, determine if they are both one edit distance apart. Note: There are 3 pos ...
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...
随机推荐
- WEP自动破解工具wesside-ng
WEP自动破解工具wesside-ng wesside-ng是aircrack-ng套件提供的一个概念验证工具.该工具可以自动扫描无线网络,发现WEP加密的AP.然后,尝试关联该AP.关联成功后, ...
- ArduinoYun教程之Arduino环境与Linux环境的桥梁Bridge
ArduinoYun教程之Arduino环境与Linux环境的桥梁Bridge Arduino环境与Linux环境的桥梁——Bridge 在第一章中介绍Arduino Yun硬件的时候提到过,它上面有 ...
- BeanUtils工具
什么是BeanUtils工具 BeanUtils工具是一种方便我们对JavaBean进行操作的工具,是Apache组织下的产品. BeanUtils工具一般可以方便javaBean的哪些操作? 1)b ...
- TokenAutication源码分析
创建的token如何交给前端进行使用呢? 在官方文档说明中,将产生的這个token放在header中 TokenAutication认证原理 用户认证成功以后,会在服务端产生一个Token.并且服务端 ...
- UVALive 6906 Cluster Analysis 并查集
Cluster Analysis 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemi ...
- STM32 Timer Clock sources -- External Clock Both Edge
Timers get their clock source from External pins or Internal timer sources. External External = pins ...
- Keil debugging techniques and alternative printf (SWO function)
One of the basic needs of the embedded software development through the terminal to output debugging ...
- jquery 网页局部打印总结
最近开发过程中遇到了js局部打印的功能,在网上找相关的资料,最终找到了juery.jqprint-0.3.js 和jquery.PrintArea.js两种. 最初使用的是jquery.jqprint ...
- delphi GetKeyState
GetKeyState(VK_CAPITAL) & 0x0001 0x8000 是键有否按下0x0001 是键的翻转状态 var bF1Down: Boolean;begin bF1Down ...
- Task.FromResult应用场景举例
Task.FromResult用来创建一个带返回值的.已完成的Task. 场景一:以同步的方式实现一个异步接口方法 比如有一个接口包含异步方法. interface IMyInterface { Ta ...