在压缩感知中,总是看到"矩阵满足RIP"之类的字眼,没错,这是一个压缩感知绕不开的术语,有限等距性质(Restricted Isometry Property, RIP)。

注意:RIP性质针对的同样是感知矩阵而非测量矩阵。

0、相关概念与符号

1、RIP定义

中文版:

英文版:

概括:

(RIP)矩阵满足2K阶RIP保证了能够把任意一个K稀疏信号θK映射为唯一的y,也就是说要想通过压缩观测y恢复K稀疏信号θK,必须保证传感矩阵满足2K阶RIP,满足2K阶RIP的矩阵任意2K列线性无关。

边界解释:

上述定义中不等式边界关于1对称,其实这只是表示的方便而已,实际中可以考虑任意边界值。

2、RIP理解

理解1:能量说

向量的2范数的平方就是信号的能量,换成常见的公式:

RIP不等式:

这里的实际上是 ,即输出信号的能量, 即输入信号的能量(稀疏变换x=Ψθ为正交变换,而正交变换保持能量不变,即信号理论中的Parseval定理)。

解释1:

解释2:

RIP其实可以看成刻画一个矩阵和标准正交阵的相似程度。其对于向量做变换后的 L2 能量(范数平方)相较于原向量的能量的变化不超过RIP。RIP对于Stability 的分析非常有效。RIP 是由Candes 和Tao 提出来的,可以看他们的提出这个概念的文章: Decoding by LinearProgramming。

其实取极限当δ=0时(RIP要求0<δ<1),RIP的不等式实际上表示的是观测所得向量y的能量等于信号x的能量,在线性代数中所讲的正交变换也具有这种性质,也称为等距变换(把信号将为二维或三维时2范数的平方可形象的理解为到原点的距离),当然这里的变换因为传感矩阵A不可能是正交矩阵(不是方阵),但当极限δ=0时也能保持能量相等(也可以称为等距吧),而RIP要求0<δ<1,所以不可能等距,所以就称为有限等距性质吧。

理解2:唯一映射说

在前一篇介绍spark常数的时候,已经提到了唯一映射说这一点,可以了解一下:http://www.cnblogs.com/AndyJee/p/5083726.html

RIP性质(有限等距性质)保证了感知矩阵不会把两个不同的K稀疏信号映射到同一个集合中(保证原空间到稀疏空间的一一映射关系),要求从感知矩阵中抽取的每2K个列向量构成的矩阵是非奇异的。

当δ2s<1时可以保证零范数问题有唯一的稀疏解,而当δ2s<sqrt(2)-1时则可以保证零范数和1范数等价(零范数求解为NP-hard问题,在此前提下将其转化为1范数求最优化问题,这时是个凸优化问题)

3、RIP补充

上面我们谈到的都是感知矩阵,而实际中我们常常使用的是测量矩阵,那么怎么样才能让测量矩阵满足RIP要求呢?

前面解释中的能量说提到"RIP其实可以看成刻画一个矩阵和标准正交阵的相似程度",如

那么对于测量矩阵而言,需要满足的性质就是尽量保证其基向量与稀疏表示的基不相关,这个对于RIP来说比较通俗的理解,在实际中,有些矩阵如高斯随机矩阵、二值随机矩阵、局部傅里叶矩阵、局部哈达玛矩阵等都能够以很大的概率满足RIP。

关于矩阵中任意2K列都不相关的解释:

如果矩阵有2K列线性相关,则对于某一个2K稀疏的信号必然会有2K=0,又因为一个2K稀疏的信号可以写成两个K稀疏的信号相减(把2K稀疏信号的2K个非零项分成两部分,每部分分别包含K个非零项,其余部分填零长度与原2K稀疏信号保持不变,即得到了两个K稀疏信号,其中的一个K稀疏信号中的K个非零项乘负一,另一部分减这一部分必然等于2K稀疏信号),因此有A(θK1-θK2)=0,即K1=K2,也就是说对于两个不同的K稀疏信号θK1和θK2,压缩观测后得到了同一个y,即不能保证唯一映射,所以矩阵不能有2K列线性相关,否则将不能保证唯一映射

4、参考文章

http://blog.csdn.net/jbb0523/article/details/44565647

浅谈压缩感知(十六):感知矩阵之RIP的更多相关文章

  1. Qt浅谈之二十六图片滑动效果

    一.简介 博客中发现有作者写的仿360的代码,觉得其中图片滑动的效果很有意思,特提取其中的代码.并加上类似mac的画面移动的动画效果. 二.详解 1.代码一:界面滑动(QWidget) (1)slid ...

  2. 浅谈压缩感知(二十四):压缩感知重构算法之子空间追踪(SP)

    主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子 ...

  3. 浅谈压缩感知(二十):OMP与压缩感知

    主要内容: OMP在稀疏分解与压缩感知中的异同 压缩感知通过OMP重构信号的唯一性 一.OMP在稀疏分解与压缩感知中的异同 .稀疏分解要解决的问题是在冗余字典(超完备字典)A中选出k列,用这k列的线性 ...

  4. 浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)

    主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATL ...

  5. 【原创】浅谈指针(十二)关于static(上)

    0.前言 这个系列基本上是一月一更到两月一更 今天写一篇关于static的,内含大量干货,做好准备 1.基础知识的回顾 1.1.内存的种类 一般来说,我们之前已经讲过的变量(或者说是内存)可以大体分为 ...

  6. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

  7. 浅谈压缩感知(十五):感知矩阵之spark常数

    在压缩感知中,有一些用来评价感知矩阵(非测量矩阵)的指标,如常见的RIP等,除了RIP之外,spark常数也能够用来衡量能否成为合适的感知矩阵. 0.相关概念与符号 1.零空间条件NULL Space ...

  8. 浅谈压缩感知(十四):傅里叶矩阵与小波变换矩阵的MATLAB实现

    主要内容: 傅里叶矩阵及其MATLAB实现 小波变换矩阵及其MATLAB实现  傅里叶矩阵及其MATLAB实现 傅里叶矩阵的定义:(来源: http://mathworld.wolfram.com/F ...

  9. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

随机推荐

  1. office 2010 正在配置Microsoft Office ...

    原因主要是安装时候所用账户和你目前登陆的账户不为同一个账户,或者你进行过覆盖安装或是重新安装过系统但是office得安装目录没有变. 解决方法:激活office----更改注册表--完成 [HKEY_ ...

  2. Linux内存管理学习2 —— head.S中的段页表的建立

    作者 彭东林 pengdonglin137@163.com 平台 TQ2440 Qemu+vexpress-ca9 Linux-4.10.17 正文 继续分析head.S: 此时r2存放的是设备树镜像 ...

  3. 委托、Lambda表达式、事件系列06,使用Action实现观察者模式,体验委托和事件的区别

    在"实现观察者模式(Observer Pattern)的2种方式"中,曾经通过接口的方式.委托与事件的方式实现过观察者模式.本篇体验使用Action实现此模式,并从中体验委托与事件 ...

  4. 警告 7 隐藏了继承的成员。如果是有意隐藏,请使用关键字 new

    public new bool Print(string 承包方编码, MapPrint.My2Progress pMy2Progress, bool Label2ZJ)

  5. 安装GCC-4.6.1详细教程

    一.什么是Gcc Linux系统下的Gcc(GNU C Compiler)是GNU推出的功能强大.性能优越的多平台编译器,是GNU的代表作品之一.gcc是可以在多种硬体平台上编译出可执行程序的超级编译 ...

  6. WordPress主题开发: 制作文章页面single.php

    可以调用的文章内容: 调用文章标题:<?php the_title(); ?> 调用文章内容:<?php the_content(); ?> 调用文章摘要:<?php t ...

  7. Java并发编程的艺术(十)——线程池(1)

    线程池的作用 减少资源的开销 减少了每次创建线程.销毁线程的开销. 提高响应速度 每次请求到来时,由于线程的创建已经完成,故可以直接执行任务,因此提高了响应速度. 提高线程的可管理性 线程是一种稀缺资 ...

  8. 自动移动的ImageView

     图片会慢慢的向左移动,到头了后,再循环 其实这个效果和屏幕背景图片的效果差不多,屏幕背景图是随着滑动来慢慢的滚动,这是自己每个n秒开始动.实现方式自然是用自定的控件了.这次继承的是ImageView ...

  9. Java 正则表达式(精华)

    英文:Jakob Jenkov译文:严亮链接:ifeve.com/java-regex/ Java 提供了功能强大的正则表达式API,在java.util.regex 包下.本教程介绍如何使用正则表达 ...

  10. hive php连接查询

    baidu hive php PHP连接Hive执行sql查询 php通过 thrift访问hadoop的hive php开发Hive Web查询 php连接hive执行sql查询 利用python将 ...