这个题目原型应该是吃完所有的草丛的最小时间,现在变成了每个草丛被吃的时间和,貌似如果还是按照原来的dp方法dp[i][j]表示吃完i到j的草丛的花掉的时间的话,有两个因素会影响后面的决策,一个是花掉的时间,一个是吃掉的草丛的时间累加和。

但是仔细观察这个问题会发现,第一个走的距离,会被计算n次,第二个走的距离,会被计算n-1次。如果我们把这个代价转移到该草丛上的话。那么dp[i][j]表示转移后的花掉的时间,那么现在影响后面决策的就只有这个时间了。那么问题就解决了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e3+9;
int n,l;
int a[maxn],dp[maxn][maxn][2];
int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&l)!=EOF)
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
n++;a[n]=l;
sort(a+1,a+1+n);
int t=lower_bound(a+1,a+n,l)-a;
memset(dp,50,sizeof(dp));
dp[t][t][0]=0;
for(int k=0;k<n-1;k++)
for(int i=max(1,t-k);i<=min(n,t+k);i++)
{
dp[i-1][i+k][0]=min(dp[i][i+k][0]+(a[i]-a[i-1])*(n-k-1),dp[i][i+k][1]+(a[i+k]-a[i-1])*(n-k-1));
dp[i][i+k+1][1]=min(dp[i][i+k][0]+(a[i+k+1]-a[i])*(n-k-1),dp[i][i+k][1]+(a[i+k+1]-a[i+k])*(n-k-1));
}
int ans=min(dp[1][n][0],dp[1][n][1]);
cout<<ans<<endl;
}
return 0;
}

poj 3042 Grazing on the Run的更多相关文章

  1. BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )

    dp... dp( l , r , k )  , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...

  2. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  3. BZOJ1742[Usaco2005 nov]Grazing on the Run

    Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...

  4. [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742

    分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...

  5. 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)

    传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...

  6. 【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp

    题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋,它想把它们全部吃 ...

  7. BZOJ1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草

    数轴上n<=1000个点,从p出发以任意顺序走到所有的点,求到达每个点的时间之和的最小值. 好题!看起来水水的实际易错! 显然的结论是经过一个区间点之后肯定落在左端点或右端点上,谁没事最后还往中 ...

  8. bzoj 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草【区间dp】

    挺好的区间dp,状态设计很好玩 一开始按套路设f[i][j],g[i][j]为吃完(i,j)区间站在i/j的最小腐败值,后来发现这样并不能保证最优 实际上是设f[i][j],g[i][j]为从i开始吃 ...

  9. POJ 3042 区间DP(费用提前计算相关的DP)

    题意: 思路: f[i][j][1]表示从i到j的区间全都吃完了 现在在j点 变质期最小是多少 f[i][j][0]表示从i到j的区间全都吃完了 现在在i点 变质期最小是多少 f[i][j][0]=m ...

随机推荐

  1. redis实现发布(订阅)消息

    redis实现发布(订阅)消息 什么是redis的发布订阅(pub/sub)?   Pub/Sub功能(means Publish, Subscribe)即发布及订阅功能.基于事件的系统中,Pub/S ...

  2. SharePoint 2016 站点注册工作流服务报错

    前言 安装完SharePoint 2016工作流环境,本来以为万事大吉了,结果给站点注册的时候报错了.搜了很多文章,发现后面要加上-Force参数. 错误截图 使用的为站点注册工作流服务的PowerS ...

  3. SqlServer 查看备份文件中逻辑文件信息的Sql语句

    RESTORE FILELISTONLY FROM DISK = 'D:\All\DataBase\(2013-12-18)-1.bak' 用来查看备份文件中的逻辑文件信息. 相关信息:SqlServ ...

  4. 低版本系统兼容的ActionBar(三)自定义Item视图+进度条的实现+下拉导航+透明ActionBar

           一.自定义MenuItem的视图 custom_view.xml (就是一个单选按钮) <?xml version="1.0" encoding="u ...

  5. HTML5 a标签的download属性

    介绍一个HTML5的新特性 a标签的download属性: 目前市场上面支持的浏览器有限: html: <!DOCTYPE html> <html> <body> ...

  6. Easyui 搜索框的折叠与展开方法

    HTML 文件: <div id="searchForm" region="north" title="XXXX查询" collaps ...

  7. 关于Java中的equals方法

    关于Java中的equals方法 欢迎转载,但是请填写本人的博客园原址https://www.cnblogs.com/JNovice/p/9347099.html 一.什么是equals方法 equa ...

  8. 优化算法动画演示Alec Radford's animations for optimization algorithms

    Alec Radford has created some great animations comparing optimization algorithms SGD, Momentum, NAG, ...

  9. Html、Asp、Php、Jsp禁止页面缓存

    html:<meta http-equiv="pragma" content="no-cache"><meta http-equiv=&quo ...

  10. 图解 MongoDB 地理位置索引的实现原理(转)

    原文链接:图解 MongoDB 地理位置索引的实现原理 地理位置索引支持是MongoDB的一大亮点,这也是全球最流行的LBS服务foursquare 选择MongoDB的原因之一.我们知道,通常的数据 ...