Intel DAAL AI加速——神经网络
- # file: neural_net_dense_batch.py
- #===============================================================================
- # Copyright 2014-2018 Intel Corporation.
- #
- # This software and the related documents are Intel copyrighted materials, and
- # your use of them is governed by the express license under which they were
- # provided to you (License). Unless the License provides otherwise, you may not
- # use, modify, copy, publish, distribute, disclose or transmit this software or
- # the related documents without Intel's prior written permission.
- #
- # This software and the related documents are provided as is, with no express
- # or implied warranties, other than those that are expressly stated in the
- # License.
- #===============================================================================
- #
- # ! Content:
- # ! Python example of neural network training and scoring
- # !*****************************************************************************
- #
- ## <a name="DAAL-EXAMPLE-PY-NEURAL_NET_DENSE_BATCH"></a>
- ## \example neural_net_dense_batch.py
- #
- import os
- import sys
- import numpy as np
- from daal.algorithms.neural_networks import initializers
- from daal.algorithms.neural_networks import layers
- from daal.algorithms import optimization_solver
- from daal.algorithms.neural_networks import training, prediction
- from daal.data_management import NumericTable, HomogenNumericTable
- utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
- if utils_folder not in sys.path:
- sys.path.insert(0, utils_folder)
- from utils import printTensors, readTensorFromCSV
- # Input data set parameters
- trainDatasetFile = os.path.join("..", "data", "batch", "neural_network_train.csv")
- trainGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_train_ground_truth.csv")
- testDatasetFile = os.path.join("..", "data", "batch", "neural_network_test.csv")
- testGroundTruthFile = os.path.join("..", "data", "batch", "neural_network_test_ground_truth.csv")
- fc1 = 0
- fc2 = 1
- sm1 = 2
- batchSize = 10
- def configureNet():
- # Create layers of the neural network
- # Create fully-connected layer and initialize layer parameters
- fullyConnectedLayer1 = layers.fullyconnected.Batch(5)
- fullyConnectedLayer1.parameter.weightsInitializer = initializers.uniform.Batch(-0.001, 0.001)
- fullyConnectedLayer1.parameter.biasesInitializer = initializers.uniform.Batch(0, 0.5)
- # Create fully-connected layer and initialize layer parameters
- fullyConnectedLayer2 = layers.fullyconnected.Batch(2)
- fullyConnectedLayer2.parameter.weightsInitializer = initializers.uniform.Batch(0.5, 1)
- fullyConnectedLayer2.parameter.biasesInitializer = initializers.uniform.Batch(0.5, 1)
- # Create softmax layer and initialize layer parameters
- softmaxCrossEntropyLayer = layers.loss.softmax_cross.Batch()
- # Create configuration of the neural network with layers
- topology = training.Topology()
- # Add layers to the topology of the neural network
- topology.push_back(fullyConnectedLayer1)
- topology.push_back(fullyConnectedLayer2)
- topology.push_back(softmaxCrossEntropyLayer)
- topology.get(fc1).addNext(fc2)
- topology.get(fc2).addNext(sm1)
- return topology
- def trainModel():
- # Read training data set from a .csv file and create a tensor to store input data
- trainingData = readTensorFromCSV(trainDatasetFile)
- trainingGroundTruth = readTensorFromCSV(trainGroundTruthFile, True)
- sgdAlgorithm = optimization_solver.sgd.Batch(fptype=np.float32)
- # Set learning rate for the optimization solver used in the neural network
- learningRate = 0.001
- sgdAlgorithm.parameter.learningRateSequence = HomogenNumericTable(1, 1, NumericTable.doAllocate, learningRate)
- # Set the batch size for the neural network training
- sgdAlgorithm.parameter.batchSize = batchSize
- sgdAlgorithm.parameter.nIterations = int(trainingData.getDimensionSize(0) / sgdAlgorithm.parameter.batchSize)
- # Create an algorithm to train neural network
- net = training.Batch(sgdAlgorithm)
- sampleSize = trainingData.getDimensions()
- sampleSize[0] = batchSize
- # Configure the neural network
- topology = configureNet()
- net.initialize(sampleSize, topology)
- # Pass a training data set and dependent values to the algorithm
- net.input.setInput(training.data, trainingData)
- net.input.setInput(training.groundTruth, trainingGroundTruth)
- # Run the neural network training and retrieve training model
- trainingModel = net.compute().get(training.model)
- # return prediction model
- return trainingModel.getPredictionModel_Float32()
- def testModel(predictionModel):
- # Read testing data set from a .csv file and create a tensor to store input data
- predictionData = readTensorFromCSV(testDatasetFile)
- # Create an algorithm to compute the neural network predictions
- net = prediction.Batch()
- net.parameter.batchSize = predictionData.getDimensionSize(0)
- # Set input objects for the prediction neural network
- net.input.setModelInput(prediction.model, predictionModel)
- net.input.setTensorInput(prediction.data, predictionData)
- # Run the neural network prediction
- # and return results of the neural network prediction
- return net.compute()
- def printResults(predictionResult):
- # Read testing ground truth from a .csv file and create a tensor to store the data
- predictionGroundTruth = readTensorFromCSV(testGroundTruthFile)
- printTensors(predictionGroundTruth, predictionResult.getResult(prediction.prediction),
- "Ground truth", "Neural network predictions: each class probability",
- "Neural network classification results (first 20 observations):", 20)
- topology = ""
- if __name__ == "__main__":
- predictionModel = trainModel()
- predictionResult = testModel(predictionModel)
- printResults(predictionResult)
目前支持的Layers:
- Common Parameters
- Fully Connected Forward Layer
- Fully Connected Backward Layer
- Absolute Value ForwardLayer
- Absolute Value Backward Layer
- Logistic ForwardLayer
- Logistic BackwardLayer
- pReLU ForwardLayer
- pReLU BackwardLayer
- ReLU Forward Layer
- ReLU BackwardLayer
- SmoothReLU ForwardLayer
- SmoothReLU BackwardLayer
- Hyperbolic Tangent Forward Layer
- Hyperbolic Tangent Backward Layer
- Batch Normalization Forward Layer
- Batch Normalization Backward Layer
- Local-Response Normalization ForwardLayer
- Local-Response Normalization Backward Layer
- Local-Contrast Normalization ForwardLayer
- Local-Contrast Normalization Backward Layer
- Dropout ForwardLayer
- Dropout BackwardLayer
- 1D Max Pooling Forward Layer
- 1D Max Pooling Backward Layer
- 2D Max Pooling Forward Layer
- 2D Max Pooling Backward Layer
- 3D Max Pooling Forward Layer
- 3D Max Pooling Backward Layer
- 1D Average Pooling Forward Layer
- 1D Average Pooling Backward Layer
- 2D Average Pooling Forward Layer
- 2D Average Pooling Backward Layer
- 3D Average Pooling Forward Layer
- 3D Average Pooling Backward Layer
- 2D Stochastic Pooling Forward Layer
- 2D Stochastic Pooling Backward Layer
- 2D Spatial Pyramid Pooling ForwardLayer
- 2D Spatial Pyramid Pooling BackwardLayer
- 2D Convolution Forward Layer
- 2D Convolution Backward Layer
- 2D Transposed Convolution ForwardLayer
- 2D Transposed Convolution BackwardLayer
- 2D Locally-connected Forward Layer
- 2D Locally-connected Backward Layer
- Reshape ForwardLayer
- Reshape BackwardLayer
- Concat ForwardLayer
- Concat BackwardLayer
- Split Forward Layer
- Split Backward Layer
- Softmax ForwardLayer
- Softmax BackwardLayer
- Loss Forward Layer
- Loss Backward Layer
- Loss Softmax Cross-entropy ForwardLayer
- Loss Softmax Cross-entropy BackwardLayer
- Loss Logistic Cross-entropy ForwardLayer
- Loss Logistic Cross-entropy BackwardLayer
- Exponential Linear Unit Forward Layer
- Exponential Linear Unit Backward Layer
Intel DAAL AI加速——神经网络的更多相关文章
- Intel DAAL AI加速——支持从数据预处理到模型预测,数据源必须使用DAAL的底层封装库
数据源加速见官方文档(必须使用DAAL自己的库): Data Management Numeric Tables Tensors Data Sources Data Dictionaries Data ...
- Intel DAAL AI加速 ——传统决策树和随机森林
# file: dt_cls_dense_batch.py #===================================================================== ...
- 英特尔® 至强® 平台集成 AI 加速构建数据中心智慧网络
英特尔 至强 平台集成 AI 加速构建数据中心智慧网络 SNA 通过 AI 方法来实时感知网络状态,基于网络数据分析来实现自动化部署和风险预测,从而让企业网络能更智能.更高效地为最终用户业务提供支撑. ...
- 释放至强平台 AI 加速潜能 汇医慧影打造全周期 AI 医学影像解决方案
基于英特尔架构实现软硬协同加速,显著提升新冠肺炎.乳腺癌等疾病的检测和筛查效率,并帮助医疗科研平台预防"维度灾难"问题 <PAGE 1 LEFT COLUMN: CUSTOM ...
- tesorflow - create neural network+结果可视化+加速神经网络训练+Optimizer+TensorFlow
以下仅为了自己方便查看,绝大部分参考来源:莫烦Python,建议去看原博客 一.添加层 def add_layer() 定义 add_layer()函数 在 Tensorflow 里定义一个添加层的函 ...
- Intel daal数据预处理
https://software.intel.com/en-us/daal-programming-guide-datasource-featureextraction-py # file: data ...
- TensorFlow实战第三课(可视化、加速神经网络训练)
matplotlib可视化 构件图形 用散点图描述真实数据之间的关系(plt.ion()用于连续显示) # plot the real data fig = plt.figure() ax = fig ...
- deeplearning.ai 卷积神经网络 Week 3 目标检测 听课笔记
本周的主题是对象检测(object detection):不但需要检测出物体(image classification),还要能定位出在图片的具体位置(classification with loca ...
- 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...
随机推荐
- bzoj1660 / P2866 [USACO06NOV]糟糕的一天Bad Hair Day
P2866 [USACO06NOV]糟糕的一天Bad Hair Day 奶牛题里好多单调栈..... 维护一个单调递减栈,存每只牛的高度和位置,顺便统计一下答案. #include<iostre ...
- c++中的字符集与中文
就非西欧字符而言,比如中国以及港澳台,在任何编程语言的开发中都不得不考虑字符集及其表示.在c++中,对于超过1个字节的字符,有两种方式可以表示: 1.多字节表示法:通常用于存储(空间效率考虑). 2. ...
- Java filter中的chain.doFilter详解
转载: 一.chain.doFilter作用 1.一般filter都是一个链,web.xml 里面配置了几个就有几个.一个一个的连在一起 request -> filter1 -> fil ...
- HDU 5887 Herbs Gathering(搜索求01背包)
http://acm.hdu.edu.cn/showproblem.php?pid=5887 题意: 容量很大的01背包. 思路: 因为这道题目背包容量比较大,所以用dp是行不通的.所以得用搜索来做, ...
- UVa 10118 免费糖果(记忆化搜索+哈希)
https://vjudge.net/problem/UVA-10118 题意: 桌上有4堆糖果,每堆有N颗.佳佳有一个最多可以装5颗糖的小篮子.他每次选择一堆糖果,把最顶上的一颗拿到篮子里.如果篮子 ...
- SVN基本命令总结
1.svn add [path] 预定添加文件或者目录到版本库,这些add的文件会在下一次提交文件时同步到版本服务器. 2.svn commit [path] 提交文件到版本服务器. 3.svn co ...
- React Native API之 ActionSheetIOS
ok!先来演示是下效果: 官网教程:http://reactnative.cn/docs/0.31/actionsheetios.html#content 上代码:引入API组件: import Re ...
- AtCoder Grand Contest 013 C :Ants on a Circle
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- OpenVPN Windows 平台安装部署教程
一.环境准备: 操作系统Windows 服务器IP:192.168.88.123 VPN:192.168.89.1 客户端IP:192.168.78.3 客户端服务端单网卡,路由器做好端口映射 安装 ...
- [ios]sqlite轻量级数据库学习连接
SQLLite (一)基本介绍 http://blog.csdn.net/lyrebing/article/details/8224431 SQLLite (二) :sqlite3_open, sql ...