Multi-target tracking by Lagrangian relaxation to min-cost network flow
Multi-target tracking by Lagrangian relaxation to min-cost network flow
读 “Multi-target tracking by lagrangian relaxation to min-cost network flow, CVPR,2013”小结。
昨晚老板让看一下这篇文章写几句总结给他,所以就看了看,今天顺便简单总结一下这篇文章。
这篇文章模型的核心依然是网络流算法,但和一般网络流算法不同点在于:一般方法在构建图时直接将每一个observation作为node,而observation之间的相互关系使用edge表示,这样每个edge表示的时相连node之间的相似度或者关联程度;而这篇文章所提模型中,在构建图时使用的是candidate pair作为node,然后pair of candidate pairs之间存在这edge,通过这种方式,能够将连续三帧之间的高阶信息,比如连续三帧之间速度近似恒定,融入到模型中。而正是由于不同的构图方式,导致必须引入一些附加的约束以满足多目标跟踪中 track-detection之间的一对一关系。对于提出的模型,通过适当的拉格朗日松弛可以转化为一般的网络流算法有效求解。
illustrative overview of proposed graph representation
使用一个简单的例子清楚的阐述了模型的构图方式。
假设现在有连续的三帧图像的observations。第一帧有3个表示为1,2,3,第二帧有两个表示为4,5,第三帧3个表示为6,7,8.一般网络流算法的构图方式如下(这里没有添加源点和汇点)
每条edge的流量是一个二值变量, 网络流显然应该满足流量守恒约束,每条edge上的代价即相连两个不同帧间observations的匹配程度,然后可以使用最小费用流算法求解模型。
上面模型中每条edge上的代价仅仅描述了两帧的相连observations之间的匹配程度,而MTT问题中更高阶的信息往往更加有用。于是作者提出了下面这种构图方式
表示observations i 和j之间的连接关系,比如表示observations 1和4之间的连接关系。将连续两帧之间可能存在的匹配作为nodes,比如1,2两帧和2,3两帧的可能匹配都抽象为nodes,然后不同帧间的匹配如果存在公共点,则两个匹配之间存在edge,比如1,2两帧之间的匹配和2,3帧之间的匹配之间就存在edge。这样每个edge的cost就是两个匹配之间的相似度,匹配的信息可以包括连接的observations的相对速度和表观差异,这样edge的cost就可以包含相连三帧之间的observations的高阶信息。
MTT中一般假设(当然现在好多方法去掉了这个约束):一条轨迹在任一帧中只能匹配一个observation,同样一个observation只能对应一条轨迹。所以提出的模型中就要对nodes添加额外约束以解决nodes之间的耦合关系,即上图中彩色连线连接的nodes,只能多选一,比如,由于两个都经过observation 1,为了满足一一对应约束,必须只能二选一。
problem formulation
形式化表述模型。
现有长度为的图像序列,第帧中有个observations,其集合表示为, 表示第k帧的第i个目标。
相邻帧之间可能的匹配对是一个二元组,表示为,这些可能的匹配可以由表观相似度,距离相似度等获得。 帧k与k+1之间所有可能的匹配个数表示为,其集合表示为。 那么整个序列中nodes个数为,其总的集合表示为.
由图2进一步细化的图如下:G=(V,E),其中V包含源点s和汇点t,以及每一个match链接的两个observations,称为incoming node和outgoing node。.
将每个match表示成两个nodes有两个好处:
1.由于每条边的流量最大为1和流量平衡约束,那么离开outgoing点的流量最多只能为1,因为只有一条进入的link
2.这么做可以将一般网络流算法中unary和binary约束直接添加到match内部的link上,而高阶信息都放在了match与match之间deges上了。
注意这里一直在说连续3帧图像,起始强调3帧只是为了融合高阶信息。像遮挡这种问题就不一定非要是连续帧,通过非连续帧构造类似的图一样可以求解。
整个模型表示如下
其中表示边ij的代价,(1)表示最小代价,(2)表示二值约束,(3)表示流量平衡约束,(4)表示附加的用于一一对应的约束。(1)(2)(3)就是一般的网络流算法模型,针对于约束(4),表示第s个由outgoing和incoming点重合的matches构成的集合,整个序列总共有q个这种集合。
为了求解该模型,将约束(4)通过拉格朗日松弛放到目标式中,然后就可以转换为一般的网络流算法模型进行求解。
其中表示拉格朗日乘子
stopping criteria
因为一些约束可能本身过强,始终不可能满足,所以迭代过程可能一直不收敛,这是采用限制最大迭代次数的方式终止算法。
对迭代得到的结果进一步后处理:
连接选中的matches组成tracks
将存在冲突的track拎出来放到一个“competing tracks”的list中
在conflicted tracks中选择lowest cost的track作为正确的track取出
针对于conflicted tracks剩下的tracks,剔除冲突的match看其是否依然能够满足轨迹的条件,比如前后光滑,长度等,满足则创建新的轨迹,不满足就扔掉。
Experiments
文中分别在psu,TUD和ETHMS数据库上进行了实验,具体实验结果参见论文。
conclusion
1.该模型相对于一般的网络流算法使用了更高阶的信息
2.但这里的更高阶也仅仅是3阶的信息,现在有一些利用更高阶信息的方法提出,比基于如张量秩一近似的多目标跟踪。
3.模型通过拉格朗日松弛可以有效的转化为一般的网络流算法求解。
4.针对于算法不收敛的情形,采用了一种贪婪算法作为强制算法结束的补
Multi-target tracking by Lagrangian relaxation to min-cost network flow的更多相关文章
- min cost max flow算法示例
问题描述 给定g个group,n个id,n<=g.我们将为每个group分配一个id(各个group的id不同).但是每个group分配id需要付出不同的代价cost,需要求解最优的id分配方案 ...
- LeetCode算法题-Min Cost Climbing Stairs(Java实现)
这是悦乐书的第307次更新,第327篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第176题(顺位题号是746).在楼梯上,第i步有一些非负成本成本[i]分配(0索引). ...
- [Swift]LeetCode746. 使用最小花费爬楼梯 | Min Cost Climbing Stairs
On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...
- Geeks面试题:Min Cost Path
Min Cost Path Given a cost matrix cost[][] and a position (m, n) in cost[][], write a function tha ...
- Min Cost Climbing Stairs - LeetCode
目录 题目链接 注意点 解法 小结 题目链接 Min Cost Climbing Stairs - LeetCode 注意点 注意边界条件 解法 解法一:这道题也是一道dp题.dp[i]表示爬到第i层 ...
- Leetcode 746. Min Cost Climbing Stairs 最小成本爬楼梯 (动态规划)
题目翻译 有一个楼梯,第i阶用cost[i](非负)表示成本.现在你需要支付这些成本,可以一次走两阶也可以走一阶. 问从地面或者第一阶出发,怎么走成本最小. 测试样例 Input: cost = [1 ...
- 746. Min Cost Climbing Stairs@python
On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...
- LN : leetcode 746 Min Cost Climbing Stairs
lc 746 Min Cost Climbing Stairs 746 Min Cost Climbing Stairs On a staircase, the i-th step has some ...
- LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11
746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...
随机推荐
- mysql 替换函数replace()实现mysql 替换字符串
mysql 替换字符串的实现方法:mysql中replace函数直接替换mysql数据库中某字段中的特定字符串,不再需要自己写函数去替换,用起来非常的方便,mysql 替换函数replace()Upd ...
- pyDay6
内容来自廖雪峰的官方网站 1.在Python中,代码不是越多越好,而是越少越好.代码不是越复杂越好,而是越简单越好,1行代码能实现的功能,决不写5行代码.请始终牢记,代码越少,开发效率越高. 2.取指 ...
- P3538 [POI2012]OKR-A Horrible Poem
P3538 [POI2012]OKR-A Horrible Poem hash+线性筛 题解 <----这篇写的不错(其实是我懒得码字了qwq) UVA10298 Power Strings 的 ...
- finedb(内置的HSQL数据库)迁移数据到MySQL
finedb(内置的HSQL数据库)迁移数据到MySQL 1. 前言 在FineBI中,决策平台的数据(用户.角色.组织机构.权限等信息)是存储在finedb数据库中的,默认情况下finedb是一个内 ...
- RabbitMQ详解(一)------简介与安装(Docker)
RABBITMQ详解(一)------简介与安装(DOCKER) 刚刚进入实习,在学习过程中没有接触过MQ,RabbitMQ 这个消息中间件,正好公司最近的项目中有用到,学习了解一下. 首先什么是MQ ...
- 20145305 《网络对抗》注入Shellcode并执行&Return-to-libc 攻击实验
注入Shellcode并执行 实践指导书 实践过程及结果截图 准备一段Shellcode 我这次实践和老师用的是同一个 设置环境 构造要注入的payload 我决定将返回地址改为0xffffd3a0 ...
- NOIP 华容道
描述 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多少时间. 小 B 玩的华容道与经典的 ...
- CSS布局总结及实际应用中产生的问题
布局初步 所谓布局,其实是指的将网页内容以一定的方式放到合适的位置上去. 布局的基本步骤: 1, 将“当前版面”以视觉上界限明显的方式进行划分若干个区块,划分只用两种方式: a) 上下结构:此时,只要 ...
- SPOJ 375 Query on a tree(树链剖分)
https://vjudge.net/problem/SPOJ-QTREE 题意: 给出一棵树,树上的每一条边都有权值,现在有查询和更改操作,如果是查询,则要输出u和v之间的最大权值. 思路: 树链剖 ...
- Linux基础※※※※连接XShell到Ubuntu 14.04 LTS
参考链接: 博客链接1:http://blog.csdn.net/lichangzai/article/details/39379153 百度百科:http://baike.baidu.com/lin ...