SELECT语句关键字的定义顺序

SELECT DISTINCT <select_list>
FROM <left_table>
<join_type> JOIN <right_table>
ON <join_condition>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
ORDER BY <order_by_condition>
LIMIT <limit_number>

SELECT语句关键字的执行顺序

SELECT
DISTINCT <select_list>
FROM <left_table>
<join_type> JOIN <right_table>
ON <join_condition>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
ORDER BY <order_by_condition>
LIMIT <limit_number> 

准备表和数据

1,新建一个测试数据库TestDB

create database TestDB;

2,创建测试表table1和table2;

CREATE TABLE table1
(
customer_id VARCHAR(10) NOT NULL,
city VARCHAR(10) NOT NULL,
PRIMARY KEY(customer_id)
)ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2
(
order_id INT NOT NULL auto_increment,
customer_id VARCHAR(10),
PRIMARY KEY(order_id)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;

3,插入测试数据;

INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou'); INSERT INTO table2(customer_id) VALUES('163');
INSERT INTO table2(customer_id) VALUES('163');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('9you');
INSERT INTO table2(customer_id) VALUES('tx');
INSERT INTO table2(customer_id) VALUES(NULL);

4,查看表

mysql> select * from table1;
+-------------+----------+
| customer_id | city |
+-------------+----------+
| 163 | hangzhou |
| 9you | shanghai |
| baidu | hangzhou |
| tx | hangzhou |
+-------------+----------+
rows in set (0.00 sec) mysql> select * from table2;
+----------+-------------+
| order_id | customer_id |
+----------+-------------+
| 1 | 163 |
| 2 | 163 |
| 3 | 9you |
| 4 | 9you |
| 5 | 9you |
| 6 | tx |
| 7 | NULL |
+----------+-------------+
rows in set (0.00 sec)

准备SQL逻辑查询测试语句

mysql> desc table1;
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| customer_id | varchar(10) | NO | PRI | NULL | |
| city | varchar(10) | NO | | NULL | |
+-------------+-------------+------+-----+---------+-------+
2 rows in set (0.06 sec) mysql> desc table2;
+-------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+----------------+
| order_id | int(11) | NO | PRI | NULL | auto_increment |
| customer_id | varchar(10) | YES | | NULL | |
+-------------+-------------+------+-----+---------+----------------+
2 rows in set (0.01 sec)

执行顺序分析

在这些SQL语句的执行过程中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我现在就来跟踪这个虚拟表的变化,得到最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。

执行FROM语句

第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table><right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积

关于什么是笛卡尔积,请自行Google补脑。经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 9you | shanghai | 1 | 163 |
| baidu | hangzhou | 1 | 163 |
| tx | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 2 | 163 |
| baidu | hangzhou | 2 | 163 |
| tx | hangzhou | 2 | 163 |
| 163 | hangzhou | 3 | 9you |
| 9you | shanghai | 3 | 9you |
| baidu | hangzhou | 3 | 9you |
| tx | hangzhou | 3 | 9you |
| 163 | hangzhou | 4 | 9you |
| 9you | shanghai | 4 | 9you |
| baidu | hangzhou | 4 | 9you |
| tx | hangzhou | 4 | 9you |
| 163 | hangzhou | 5 | 9you |
| 9you | shanghai | 5 | 9you |
| baidu | hangzhou | 5 | 9you |
| tx | hangzhou | 5 | 9you |
| 163 | hangzhou | 6 | tx |
| 9you | shanghai | 6 | tx |
| baidu | hangzhou | 6 | tx |
| tx | hangzhou | 6 | tx |
| 163 | hangzhou | 7 | NULL |
| 9you | shanghai | 7 | NULL |
| baidu | hangzhou | 7 | NULL |
| tx | hangzhou | 7 | NULL |
+-------------+----------+----------+-------------+

总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。

执行ON过滤

执行完笛卡尔积以后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+

VT2就是经过ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。

添加外部行

这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOINRIGHT OUTER JOINFULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

LEFT OUTER JOIN把左表记为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+

RIGHT OUTER JOIN把右表记为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| NULL | NULL | 7 | NULL |
+-------------+----------+----------+-------------+

FULL OUTER JOIN把左右表都作为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
| NULL | NULL | 7 | NULL |
+-------------+----------+----------+-------------+

添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

由于我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了以下这条数据:

| baidu       | hangzhou |     NULL | NULL        |

现在就把这条数据添加到VT2表中,得到的VT3表如下

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| 9you | shanghai | 3 | 9you |
| 9you | shanghai | 4 | 9you |
| 9you | shanghai | 5 | 9you |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+ 

接下来的操作都会在该VT3表上进行。

执行WHERE过滤

对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| 163 | hangzhou | 2 | 163 |
| tx | hangzhou | 6 | tx |
| baidu | hangzhou | NULL | NULL |
+-------------+----------+----------+-------------+ 

但是在使用WHERE子句时,需要注意以下两点:

  1. 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
  2. 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。

执行GROUP BY分组

GROU BY子句主要是对使用WHERE子句得到的虚拟表进行分组操作。我们执行测试语句中的GROUP BY a.customer_id,就会得到以下内容(默认只显示组内第一条):

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163 | hangzhou | 1 | 163 |
| baidu | hangzhou | NULL | NULL |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+

得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。

执行HAVING过滤

HAVING子句主要和GROUP BY子句配合使用,对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将得到以下内容:

+-------------+----------+----------+-------------+
| customer_id | city | order_id | customer_id |
+-------------+----------+----------+-------------+
| baidu | hangzhou | NULL | NULL |
| tx | hangzhou | 6 | tx |
+-------------+----------+----------+-------------+ 

这就是虚拟表VT6。

SELECT列表

现在才会执行到SELECT子句,不要以为SELECT子句被写在第一行,就是第一个被执行的。

我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| baidu | 0 |
| tx | 1 |
+-------------+--------------+

还没有完,这只是虚拟表VT7。

执行DISTINCT子句

如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

由于我的测试SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。

执行ORDER BY子句

对虚拟表中的内容按照指定的列进行排序,然后返回一个新的虚拟表,我们执行测试SQL语句中的ORDER BY total_orders DESC,就会得到以下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| tx | 1 |
| baidu | 0 |
+-------------+--------------+

可以看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。

执行LIMIT子句

LIMIT子句从上一步得到的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,得到的结果同样是无序的,所以,很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。

MySQL数据库的LIMIT支持如下形式的选择:

LIMIT n, m 

表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(现在的大数据处理,大都使用缓存)

sql逻辑查询语句的执行顺序的更多相关文章

  1. mysql SQL 逻辑查询语句和执行顺序

    关键字的执行优先级(重点) fromwheregroup byhavingselectdistinctorder bylimit 先创建两个表 CREATE TABLE table1 ( custom ...

  2. {MySQL的逻辑查询语句的执行顺序}一 SELECT语句关键字的定义顺序 二 SELECT语句关键字的执行顺序 三 准备表和数据 四 准备SQL逻辑查询测试语句 五 执行顺序分析

    MySQL的逻辑查询语句的执行顺序 阅读目录 一 SELECT语句关键字的定义顺序 二 SELECT语句关键字的执行顺序 三 准备表和数据 四 准备SQL逻辑查询测试语句 五 执行顺序分析 一 SEL ...

  3. MySQL的逻辑查询语句的执行顺序

    一.select语句关键字的定义顺序 二.select语句关键字的执行顺序 三.准备表和数据 四.准备SQL逻辑查询测试语句 五.执行顺序分析 一.select语句关键字的定义顺序 SELECT DI ...

  4. SQL逻辑查询语句执行顺序 需要重新整理

    一.SQL语句定义顺序 1 2 3 4 5 6 7 8 9 10 SELECT DISTINCT <select_list> FROM <left_table> <joi ...

  5. python 3 mysql sql逻辑查询语句执行顺序

    python 3 mysql sql逻辑查询语句执行顺序 一 .SELECT语句关键字的定义顺序 SELECT DISTINCT <select_list> FROM <left_t ...

  6. mysql第四篇--SQL逻辑查询语句执行顺序

    mysql第四篇--SQL逻辑查询语句执行顺序 一.SQL语句定义顺序 SELECT DISTINCT <select_list> FROM <left_table> < ...

  7. 浅谈SQL优化入门:1、SQL查询语句的执行顺序

    1.SQL查询语句的执行顺序 (7) SELECT (8) DISTINCT <select_list> (1) FROM <left_table> (3) <join_ ...

  8. SQLServer2005中查询语句的执行顺序

    SQLServer2005中查询语句的执行顺序   --1.from--2.on--3.outer(join)--4.where--5.group by--6.cube|rollup--7.havin ...

  9. Oracle中的一些查询语句及其执行顺序

    查询条件: 1)LIKE:模糊查询,需要借助两个通配符,%:表示0到多个字符:_:标识单个字符. 2)IN(list):用来取出符合列表范围中的数据. 3)NOT IN(list): 取出不符合此列表 ...

随机推荐

  1. Linux 工具,一本好书 大牛的博客

    http://linuxtools-rst.readthedocs.io/zh_CN/latest/base/index.html http://design-patterns.readthedocs ...

  2. LoadRunner-循环

    Edit Runtime Settings ,设置循环次数 在Open Parameter List 里设置循环参数,比如用例为删除notice,每执行一次用例id值不同. 把id替换为参数,并在参数 ...

  3. flask之表单验证 2018.12.23

    #flask的消息闪现依赖于flash库,用户发送的请求方式存储在request模块中 #跳转依赖于redirect模块,还可以通过url_for方法来进行方法上的寻址 from flask impo ...

  4. mySql的普通索引和复合索引

    有关普通索引和组合索引问题: 索引分单列索引和组合索引:单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引:组合索引,即一个索包含多个列.   MySQL索引类型包括:   ...

  5. IP地址必知

    IP地址分类:A类IP段 0.0.0.0 ~ 127.255.255.255(0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh)(保留给ZF或大型企业)B类IP段 128.0.0 ...

  6. ssh stricthostkeychecking=0

    SSH 公钥检查是一个重要的安全机制,可以防范中间人劫持等黑客攻击. 但是在特定情况下,严格的 SSH 公钥检查会破坏一些依赖 SSH 协议的自动化任务,就需要一种手段能够绕过 SSH 的公钥检查. ...

  7. python中operator.itemgetter函数

    operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号(即需要获取的数据在对象中的序号),下面看例子. k = [,,] b = ) print(b(k)) #输 ...

  8. C++(STL)&&树-堆结构练习——合并果子之哈夫曼树

    题目题解:http://blog.csdn.net/xu12110501127/article/details/9199335 有关博客:http://www.360doc.com/content/1 ...

  9. 机器学习理论基础学习9--- EM 算法

    EM算法的适用场景: EM算法用于估计含有隐变量的概率模型参数的极大似然估计,或者极大后验概率估计. 当概率模型既含有观测值,又含有隐变量或潜在变量时,就可以使用EM算法来求解概率模型的参数. 当概率 ...

  10. Vim/Vi的使用

     Vim 是vi的加强 Gvim图形化的vim Vim/Vi简介 Vim/Vi是一个功能强大的全屏幕文本编辑器,是Linux/Unix上最常用的文本编辑器,他们 的作用是建立,编辑,显示文本文件 Vi ...