题目链接:http://poj.org/problem?id=1845

关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html

二分法思想:选定一个要进行比较的目标,在区间[l,r]之间不断二分,直到取到与目标相等的值。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=10000;
const int MOD=9901; ll mult_mod(ll a,ll b)
{
a%=MOD;b%=MOD;
ll res=0;
while(b)
{
if(b&1)
{
res+=a;
res%=MOD;
}
a<<=1;
if(a>=MOD) a%=MOD;
b>>=1;
}
return res;
} ll pow_mod(ll x,ll n)
{
if(n==1) return x%MOD;
x%=MOD;
ll t=x,res=1;
while(n)
{
if(n&1) res=mult_mod(res,t);
t=mult_mod(t,t);
n>>=1;
}
return res;
} int prime[N+5];
int tot;
int vis[N+5]; void isPrime()
{
tot=0;
memset(vis,0,sizeof(vis));
memset(prime,0,sizeof(prime));
for(int i=2;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
for(int j=i*i;j<N;j+=i)
vis[j]=1;
}
}
} ll factor[100][2];
int cnt;
//分解质因数
void getFactor(ll x)
{
cnt=0;
ll t=x;
for(int i=0;prime[i]<=t/prime[i];i++)
{
factor[cnt][1]=0;
while(t%prime[i]==0)
{
factor[cnt][0]=prime[i];
while(t%prime[i]==0)
{
factor[cnt][1]++;
t/=prime[i];
}
cnt++;
}
}
if(t!=1)
{
factor[cnt][0]=t;
factor[cnt][1]=1;
cnt++;
}
} ll sum(ll p,ll n)
{
if(p==0) return 0;
if(n==0) return 1;
if(n&1)
return ((1+pow_mod(p,n/2+1))%MOD*sum(p,n/2)%MOD)%MOD;
else
return ((1+pow_mod(p,n/2+1))%MOD*sum(p,n/2-1)+pow_mod(p,n/2)%MOD)%MOD;
} int main()
{
int a,b;
isPrime();
while(~scanf("%d%d",&a,&b))
{
getFactor(a);
ll ans=1;
for(int i=0;i<cnt;i++)
{
ans*=(sum(factor[i][0],b*factor[i][1])%MOD);
ans%=MOD;
}
printf("%I64d\n",ans);
}
return 0;
}

POJ 1845 Sumdiv#质因数分解+二分的更多相关文章

  1. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  2. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  3. POJ - 1845 Sumdiv(分治)

    题意:求$A^{B}$的所有约数之和$mod\ 9901$ 思路:由结论有,一个数$n$进行质因数分解得到$n={p_{1}}^{c_{1}} * {p_{2}}^{c_{2}} *...* {p_{ ...

  4. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  5. POJ 1845 Sumdiv(因子分解+快速幂+二分求和)

    题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...

  6. POJ 1845 Sumdiv (求某个数的所有正因子的和)

    题意: 求A^B的所有正因子的和,最后模9901的结果. 思路: 若对一个数n进行素数分解,n=p1^a1*p2^a2*p3^a3*...*pk^ak那么n的所有正因子之和sum=(1+p1+...+ ...

  7. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  8. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  9. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

随机推荐

  1. action中list传到JSP中取不到值的问题

    今天遇到了这个问题 action中list传到JSP中取不到值 搞了半天是因为我在JSP中取值的的时候 <s:iterator  value="shlist" var=&qu ...

  2. 运行机制和JVM

    Java代码编译后生成一种与平台无关的字节码(也就是class文件).当然,这种字节码不是可执行的,必须使用Java解释器来解释执行. 负责解释执行字节码文件的是Java虚拟机,即JVM.JVM是可运 ...

  3. line-height 行高

    line-height 行高指一行文字的高度,具体来说是指两行文子间基线间的距离      line-height 与 font-size 的计算值之差(行距)分为两半,分别加到一个文本行内容的顶部和 ...

  4. js时间戳转换时间格式

    function getLocalTime(time){ if(time > 0){ var dateStr = new Date(time * 1000); var str = "& ...

  5. python3中字典的copy

    字典是可变的: first和second同时指向一个字典.first修改也会影响second.在程序中一定注意对字典参数的修改会对原始的字典进行修改.这也体现了字典是可变的. 字典的copy方法是浅拷 ...

  6. Java 多线程 笔记 转自http://www.cnblogs.com/lwbqqyumidi/p/3804883.html

    多线程作为Java中很重要的一个知识点, 一.线程的生命周期及五种基本状态 关于Java中线程的生命周期,首先看一下下面这张较为经典的图: 上图中基本上囊括了Java中多线程各重要知识点.掌握了上图中 ...

  7. app兼容性测试的几种方案

    1.统计自己的应用被使用的数据 通过友盟或Flurry等在应用嵌入,得到应用在哪些机型上被安装了,排名前十的就是测试的重点机型 2.可参考兼容性测试平台的测试结果 比如Testin或百度的MTC平台, ...

  8. IOS多线程加锁

    注意:加锁位置不同产生结果不同 -(void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { / ...

  9. 【NOIP2013提高组】货车运输

    货车运输  (truck.cpp/c/pas) [问题描述]  A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有q辆货车在运输货物,司机们想知道每辆 ...

  10. Filewatcher

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...