说一下BFS和DFS,这是个比较重要的概念,是很多很多算法的基础。

  不过在说这个之前需要先说一下图和树,当然这里的图不是自拍的图片了,树也不是能结苹果的树了。这里要说的是图论和数学里面的概念。

  

  以上概念来自百度百科。

  数学里面的图就是许多的点和许多的边把这些点连了起来,具体每个点放在那里没啥关系,重点是他们之间的连接关系。

  一个图长得就像是下面这样:

  这个图有6个点,8条边,其中有一条是自己连接自己的。

  然后图的话有有向图,无向图等等,还有很多很多分类,比如二分图等等,可以百度百科或者维基看一下就差不多明白了。

  然后树的话其实也是图,但是比较特殊而已,他有N个点,N-1条边,而且这N个点是互相连通的,那么这个图就能画成一颗树一样的样子。

  倒过来看就很像一棵树。

  然后下面要说的是BFS和DFS,这两个是一个缩写,全称是 BFS:Breadth-First-Search,宽度优先搜索;DFS:Depth-first search,深度优先搜索。

  都是一种搜索,只不过搜索的方法不一样而已。

  先说说搜索,顾名思义,搜索就是。。。搜索。对于一个图来说,搜索就是从某个点开始,不停的搜索与他相连的所有的点,然后以此接连下去,直到所有的点都被搜索到了。

  然后BFS的话就是宽度优先。

  比如这个图,如果从1开始进行搜索的话,BFS的步骤就是,先搜索所有和1相连的,也就是2和5被找到了,然后再从2开始搜索和他相连的,也就是3被找到了,然后从5搜,也就是4被找到了,然后从3开始搜索,4被找到了,但是4之前已经被5找到了,所以忽略掉就行。然后3开始搜索,忽略4所以啥都没搜到,然后从4开始,6被找到了。。。

  就是这样,这就是BFS。。。

  说完DFS比较一下两个的区别可能会比较好理解。

  DFS的话从1开始,先找到其中一个相连的,2被找到了,然后直接开始从2开始搜索,3被找到了,然后从3开始搜索,4被找到了,然后从4开始搜索,5被找到了,然后从5开始搜索,忽略已经找到的所以啥都没找到。然后没路可走了,回到前面去再走另一条路,从4开始,6被找到了,然后又没路可走了,然后再回去前面4,然后没路了 ,回去前面3,然后一直这样。。。

  DFS 就是像走迷宫一样一条路走到头直到走不通才回到前一个换一条路。。。就是这样。。。

  DFS和BFS主要是运用于对于图和树的搜索,但是绝大部分问题模型都是可以建模变成一个图或者树的,所以差不多不少问题都会涉及到这两个。

  现在知道了这个东西的实现的步骤了。下面就要说一下怎么用代码来实现他。

  先说图吧,对于每个点来说就是标号1,2,3。。。。N就好,表示有N个结点,一般题目也已经标好号了。

  然后边的话一般会就是 u,v 这样表示有一条边连接u点和v点。

  存储一个图的边有三种方法:

  首先说一下存图就是对于每个点u,记录他能到的所有点就行了。。。

  邻接矩阵:

  直接开一个N×N的二维数组E,然后 E[i][j] 为1的时候表示 i 和 j 之间有一条边,0的时候就没有。

  这样很方便简单,但是有几个缺陷,首先是效率问题,超过1000个点一般不管是空间还是时间都不允许了。然后就是如果从 3 到 5 有两条边的话,就没法表示了。。。

  所以一般很少用了现在,当然有些算法还是会用到的。

int E[][];

E[][]=;
E[][]=;

  邻接链表:

  使用链表的方式保存一个结点的所有边,就是每个点都有一个链表。

  当然写个链表很麻烦,所以一般是用vector来替代。就像是下面这样。

vector <int> E[];

E[].push_back() // 有一条从3到6的边。

  具体vector怎么用自行学习

  前向星:

  这个名字实在逼格太高,而且很好用效率也高,所以我一直都用这种方式来存图。

  他和链表几乎没什么区别,就是每次添加新的边的时候往开头加,而不是往最后加。

具体就像是下面这样:

struct Edge
{
int to,next;
}; Edge E[]; // 总共不超过1000条边。
int head[],Ecou; // 不超过100个点。 void init() // 初始化。
{
memset(head,-,sizeof(head));
Ecou=;
} void addEdge(int u,int v) // 增加边 u,v。
{
E[Ecou].to=v;
E[Ecou].next=head[u];
head[u]=Ecou++;
}

  具体的代码可以慢慢理解,而且刚开始的话用前面两种也可以。

  然后说说BFS和DFS怎么写。

  首先BFS的话需要一个队列这种数据结构来保存,队列在另一篇有说。

  因为每次找到和u相连的之后要一个个找这些点,符合先进先出。

代码如下:(采用第二种存图方式。)

bool vis[];            // 记录已经走过的点,防止重复访问。

void BFS(int root,int N)        // N个点的图,从root点开始搜索。
{
queue <int> que; memset(vis,,sizeof(vis)); // 初始化。
vis[root]=;
que.push(root); int u,len; while(!que.empty())
{
u=que.front();
que.pop(); len=E[u].size();
for(int i=;i<len;++i) // 找到和u相连的所有点,存在一个vector里面。
if(vis[E[u][i]]==)
{
vis[E[u][i]]=;
que.push(E[u][i]);
}
}
}

  十分建议手算模拟一下这个算法,对于步骤有一个清晰的认识。

然后是DFS:需要一个栈,因为每次都是搜到之后不停的往下搜,符合先进先出。但是一般来说不用栈,而是直接通过函数的递归就行了。

bool vis[];
int N; void DFS(int u)
{
int len; vis[u]=;
len=E[u].size(); for(int i=;i<len;++i)
if(vis[E[u][i]]==)
DFS(E[u][i]);
}

  差不多就是这样,也建议好好模拟一下。

  至于这两个的用途,其实在一定程度上是可以相互转化的,但是有些需要各自的特性的话就不行了。

  DFS主要的特性是深度优先,总是不停的往下找,走到没路才罢休。

  BFS则是从root开始扩展,每一层都是精密的搜索完整了才下一个。

算法录 之 BFS和DFS的更多相关文章

  1. 算法学习之BFS、DFS入门

    算法学习之BFS.DFS入门 0x1 问题描述 迷宫的最短路径 给定一个大小为N*M的迷宫.迷宫由通道和墙壁组成,每一步可以向相邻的上下左右四格的通道移动.请求出从起点到终点所需的最小步数.如果不能到 ...

  2. 算法基础:BFS和DFS的直观解释

    算法基础:BFS和DFS的直观解释 https://cuijiahua.com/blog/2018/01/alogrithm_10.html 一.前言 我们首次接触 BFS 和 DFS 时,应该是在数 ...

  3. BFS和DFS算法

    昨晚刚昨晚华为笔试题,用到了BFS和DFS,可惜自己学艺不精,忘记了实现原理,现在借用大佬写的内容给自己做个提高 转自:https://www.jianshu.com/p/70952b51f0c8 图 ...

  4. SPFA算法的判负环问题(BFS与DFS实现)

    经过笔者的多次实践(失败),在此温馨提示:用SPFA判负环时一定要特别小心! 首先SPFA有BFS和DFS两种实现方式,两者的判负环方式也是不同的.       BFS是用一个num数组,num[x] ...

  5. BFS与DFS常考算法整理

    BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...

  6. 聊聊算法——BFS和DFS

    如果面试字节跳动和腾讯,上来就是先撕算法,阿里就是会突然给你电话,而且不太在意是周末还是深夜, 别问我怎么知道的,想确认的可以亲自去试试.说到算法,直接力扣hard三百题也是可以的,但似乎会比较伤脑, ...

  7. 图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)

    参考网址:图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS) - 51CTO.COM 深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath ...

  8. 【数据结构与算法】自己动手实现图的BFS和DFS(附完整源码)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/19617187 图的存储结构 本文的重点在于图的深度优先搜索(DFS)和广度优先搜索(BFS ...

  9. 【算法】二叉树、N叉树先序、中序、后序、BFS、DFS遍历的递归和迭代实现记录(Java版)

    本文总结了刷LeetCode过程中,有关树的遍历的相关代码实现,包括了二叉树.N叉树先序.中序.后序.BFS.DFS遍历的递归和迭代实现.这也是解决树的遍历问题的固定套路. 一.二叉树的先序.中序.后 ...

随机推荐

  1. php.ini与php-fpm.conf配置文件的区别

    php-fpm.conf是PHP-FPM特有的配置文件 php.ini是所以php模式中必须的配置文件 两者的区别是,php-fpm.conf是PHP-FPM进程管理器的配置文件,php.ini是PH ...

  2. Laravel中使用Redis

    安装PHP PRedis PRedis是laravel访问redis的扩展包,只需要下载原码即可,不需要安装PHP扩展(如php-redis.so).但在这之前需要了解一个composer,因为lar ...

  3. asp.net textbox控件readonly为true时,后台取值的问题

    如题,在后台通过textbox.Text方式取值为空,不论你默认值是否是空,如想要获得,需通过request.Form[""]的方式.

  4. asp.net html table to DataTable

    添加引用 http://htmlagilitypack.codeplex.com/downloads/get/437941 protected void Export(string content,s ...

  5. iptables-1.4.19 移植到linux

    ------------------------------------------------------------------------------------------ https://g ...

  6. request.getparam()与request.getAttibute()的区别

    request.getparam()是用来获取已get或post提交的参数的值,而request.getAttibute()是获取request中存放的值

  7. eclipse无法导入已有android项目

    问题: 今天发现我拷贝的一个android项目无法导入到eclipse,但是其它的已有android项目却可以导入 思路 现在网络这么流行,当然是上网查,得益于eclipse无法导入Android工程 ...

  8. CSS样式 初学

    CSS样式 参考网站: CSS用法:3种 一:直接样式表 如<p style="color:red;">这是一个段落</p> 二:内部样式表 如:<s ...

  9. PostConstruct注解

    应用场景:当你需要往Bean里注入一个其父类中定义的属性,而你又无法复写父类的属性或属性的setter方法时 public class UserDaoImpl extends HibernateDao ...

  10. NSUserDefault -- synchronize 浅析

    NSUserDefault的使用比较简单:NSUserDefaults *mySettingData = [NSUserDefaults standardUserDefaults];  创建NSUse ...